Estimating Long-Term Disease Trajectories from Short-Term Data

从短期数据估计长期疾病轨迹

基本信息

  • 批准号:
    9212687
  • 负责人:
  • 金额:
    $ 40.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-02-01 至 2020-01-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Alzheimer's clinical trial design is predominantly guided by fragmented analyses on short-term data from pre- specified groups. We conceive these groups by cross-sectional examination of the distribution of assessments. We then characterize longitudinal changes in these groups to calculate power and sample size. This approach is effective in establishing practical inclusion criteria for staging trials, but the resuting criteria may be unnecessarily course. Novel analytical methods that capture the full continuum of the disease will make more efficient use of multivariate longitudinal data, allow more sophisticated and inclusive inclusion criteria, and provide new insights into optimal populations tailored to specific interventions. A better understanding of the long-term continuum of disease dynamics will allow us to discover gaps in our current understanding and provide a comprehensive, data-driven approach to designing clinical trials. Analytic methods to support this new approach to AD clinical trial design are underdeveloped and technically challenging. We will develop, implement, and interpret novel statistical methods to accurately and efficiently characterize the long-term dynamics of Alzheimer's disease markers from preclinical to dementia. We will apply our statistical methods to existing short-term biomarker datasets to optimize Alzheimer's clinical trial design and improve personalized prognostic predictions. This project will have a substantial impact on our progress with Alzheimer's by more accurately characterizing long-term disease dynamics; identifying risk factors and ideal clinical trial populations and outcome measures; and providing personalized prognostic predictions. Specific Aim 1: To Develop an Analytic Framework for Modeling Long-Term AD Dynamics. We will develop a novel hierarchical Bayesian latent variable model to discern long-term multivariate disease trajectories from short-term sampled data. The base model will be extended to model sampling variation, disease heterogeneity, and complex network mediation structure using Dynamic Bayesian Belief Nets. Specific Aim 2: To Develop Optimized Clinical Trial Study Designs and Personalized Prognoses. The models developed under Aim 1 will be leveraged to determine the optimal combinations of study population and outcome measure for specific mechanistic biomarker effects, and to obtain personalized predictions of disease course and therapeutic benefit. We will develop and validate the machinery necessary to use our models to make relevant clinical trial and personalized prognostic predictions. Specific Aim 3: To Develop Software and Web Application. Computer software implementing the methods developed in Aims 1-2 will be developed and distributed as a free R package. We will build an interactive web application so that clinicians and clinical trialists can explore, visualize, and interrogate our analysis results to predict prognoses and simulate clinical trial scenarios. The application will enable clinical trialists to optimize their trial designs based on our model and their prior knowledge of their intervention's biomarker effects.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael C Donohue其他文献

Michael C Donohue的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.39万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了