Sizing and Scaling in Functional Muscle Cells
功能性肌肉细胞的大小和缩放
基本信息
- 批准号:9389959
- 负责人:
- 金额:$ 45.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAgingAlpha CellAreaAtrophicBiologicalBiological ModelsBiologyCell NucleusCell SizeCell physiologyCellsCharacteristicsComputer SimulationCuesCytoplasmic TailDNADataDevelopmentDiploidyDiseaseDrosophila genusDrosophila melanogasterEmbryoEndoplasmic ReticulumExerciseExhibitsGenerationsGenesGeneticGoalsGolgi ApparatusGrowthHomeostasisHypertrophyImaging DeviceIndividualIntrinsic factorInvestigationLengthMeasurementMeasuresMechanicsMicrotubulesMitochondriaModelingMolecularMosaicismMuscleMuscle CellsMuscle DevelopmentMuscle FibersMuscle functionMuscular AtrophyMyoblastsMyopathyNatureNuclearNuclear ImportOpticsOrganellesOrganismPathway interactionsPatternPhysiologicalPlayPloidiesPositioning AttributeProcessRegenerative MedicineRegulationRegulation of Cell SizeReproducibilityResearchRoleSarcomeresShapesSiteStereotypingSynapsesSystemTendon structureTestingTimeTissuesTranslatingbasecell typegenetic manipulationimaging approachin vivoin vivo Modelinsightmathematical modelmechanical forcemuscular structurenerve supplyneuromuscularnovelrelating to nervous systemresponsescale uptool
项目摘要
Project Summary/Abstract
Cell size is one of the most basic and defining features of a cell. However, the mechanisms controlling size
are poorly understood. This is particularly true for muscle cells, which have a remarkable capacity to increase
their size in response to exercise, and to decrease in size upon inactivity, aging, or disease. The long-term
goal of this proposal is to define genes, mechanisms, and networks responsible for muscle size scaling under
normal, hypertrophic, and atrophic conditions. These mechanisms will translate both to a better understanding
of fundamental aspects required to build a functioning muscle and to better strategies for treating muscle
atrophy due to aging and disease. The objective of this proposal is to define salient features of the muscle cell
that determine muscle size using genetic, cell biological, mathematical modeling and imaging approaches. We
will perform these studies in the Drosophila larval musculature, taking advantage of its cellular simplicity, easy
readouts for cell function, optical clarity, and the availability of advanced tools for imaging and tissue-specific
manipulation of genetic, environmental, and mechanical factors in vivo. In Aim 1, we will acquire and
mathematically model measurements of cell and organelle size, particularly of nuclear distribution, size/ploidy,
and activity, to determine those that scale with muscle size under normal, hypertrophic and atrophic conditions.
We will use this model to predict the importance of specific parameters and interrelationships between these
parameters to generate functional muscle sizes. We will test our predictions by genetically manipulating the
specific measured parameters. Already we have found novel compensatory mechanisms that are invoked to
achieve a functioning muscle cell: nuclear area can be adjusted to account for differences in nuclear numbers
in the same sized muscle. In Aim 2, the localized effects of innervation, and the effects of mechanical forces on
individual nuclei size and activity and overall cell size, will be investigated. Mechanisms responsible for altering
nuclear size and activity will be uncovered. Lastly, Aim 3 will focus on the investigation of Myonuclear Domain
sizes in normal, hypertrophic and atrophic muscles. We will also mathematically model and test mechanisms
by which Myonuclear domains are created and maintained under normal, hypertrophic and atrophic conditions.
Altogether, these experimental and computational approaches will identify defining parameters of muscle cell
size under normal, hypertrophic and atrophic conditions, and their physiological range required for muscle
function. These data will reveal general principles of cell size regulation, provide insight to how improper
regulation of these processes results in disease, and inform regenerative medicine aimed at muscle.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARY K BAYLIES其他文献
MARY K BAYLIES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARY K BAYLIES', 18)}}的其他基金
Therapeutic target discovery in Drosophila models of Nemaline Myopathy
线形肌病果蝇模型中治疗靶点的发现
- 批准号:
9001905 - 财政年份:2015
- 资助金额:
$ 45.93万 - 项目类别:
Mechanisms and Function of Myonuclear Positioning
肌核定位的机制和功能
- 批准号:
10557796 - 财政年份:2014
- 资助金额:
$ 45.93万 - 项目类别:
Mechanisms and Function of Myonuclear Positioning
肌核定位的机制和功能
- 批准号:
10361441 - 财政年份:2014
- 资助金额:
$ 45.93万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
- 批准号:
23K20355 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
- 批准号:
23K24782 - 财政年份:2024
- 资助金额:
$ 45.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)