Deep characterization of the sequence space and evolutionary trajectories of reconstructed ancestral proteins - Resubmission 01
重建祖先蛋白质的序列空间和进化轨迹的深度表征 - 重新提交 01
基本信息
- 批准号:9311486
- 负责人:
- 金额:$ 31.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-04 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmino Acid SequenceAmino AcidsBacteriophagesBiochemicalBiochemistryBiological ModelsBiologyBiophysical ProcessBiophysicsCardiovascular DiseasesCellular biologyCore ProteinDNADNA Binding DomainDNA SequenceDNA-Binding ProteinsDevelopmentDiseaseEventEvolutionFamilyFoundationsGene ExpressionGene Expression RegulationGeneticGenetic DeterminismGenetic EpistasisGenotypeGoalsHandHomeostasisImmune System DiseasesImmune System and Related DisordersImmunityInflammationKnowledgeLaboratoriesLengthLibrariesMalignant NeoplasmsMapsMediatingMetabolicMetabolismMethodologyMethodsMolecularMolecular BiologyMolecular EvolutionMutationNatureNeighborhoodsOutcomePathway interactionsPhylogenetic AnalysisPlayProbabilityProcessProtein BiochemistryProtein FamilyProteinsRecording of previous eventsReproductionResponse ElementsRoleSiteSpecificityTechniquesTestingTimeVariantWorkexhaustiongenetic predictorsinsightmutation screeningnovelpermissivenessphysical propertypreventreceptorreceptor bindingreconstructionreproductivesteroid hormone receptortooltranscription factor
项目摘要
We propose the first comprehensive characterization of sequence space around an ancestral protein. This
work will 1) characterize the effects on function of all possible mutations and pairs of mutations across the
protein's entire length and of all possible combinations of mutations at a key subset of sites, 2) illuminate how
the distribution of function through this multidimensional sequence space would have affected the processes
of protein evolution (a key goal in molecular evolution), and 3) quantify the complete set of main-effect and
epistatic genetic determinants of DNA specificity in a transcription factor and elucidate their biochemical
causes – an important goal for protein biochemistry and molecular gene regulation. We use the steroid
hormone receptor DNA-binding domain as an ideal model system, because it is of great biomedical
importance; it is experimentally and phylogenetically tractable; and its specificity for DNA targets diversified
through a well-understood evolutionary process, with a known set of historical mutations and biophysical
mechanisms. The proposed work will reveal why this history occurred relative to the many other mutational
trajectories the protein could have taken as it evolved its new specificity. With the map of sequence space in
hand, we will then apply locus-specific, replicated experimental evolution to the ancestral protein, placing it
under strong selection to explore sequence space and evolve the same novel specificity that it acquired during
historical evolution. By identifying commonalities and differences among the historical trajectory,
experimental evolution trajectories, and the many other possible pathways through sequence space, we will
gain fundamental insight into the roles of contingency and determinism in evolution and illuminate
underlying mechanistic factors that caused those phenomena. Specific questions include: how many ways
were there to evolve the derived DNA specificity, and how many were accessible under selection and drift?
Did the historical outcome evolve because it was the optimal genotype, because it was the best or only
accessible genotype, or simply due to chance? If more optimal genotypes exist, what prevented the evolving
protein from reaching them? To what extent must new specificities evolve through promiscuous
intermediates, and how many mutations does it take to evolve a new specificity? We will also characterize
sequence space and experimental evolutionary trajectories around ancient receptors that existed at different
times during history; this will reveal how the protein's evolvability and robustness fluctuated over
evolutionary time due to epistatically acting mutations. Finally, by fully characterizing the main and epistatic
genetic determinants of the protein's DNA specificity, we will identify common biophysical mechanisms that
underlie DNA recognition, contributing to an important goal in molecular biology, biochemistry, cell biology,
and development. The methods and conceptual tools we develop will be applicable to studying other
transcription factors and the evolution of many other protein families.
我们首次提出了一个祖先蛋白质周围的序列空间的全面特征。这
工作将1)表征所有可能的突变和突变对功能的影响
蛋白质的全长和关键位点子集上所有可能的突变组合,2)说明了
函数在该多维序列空间中的分布将影响过程
蛋白质进化(分子进化的一个关键目标),以及3)量化一整套主效和
转录因子DNA专一性的上位性遗传决定因素及其生化性质
原因-蛋白质生物化学和分子基因调控的重要目标。我们使用类固醇
激素受体DNA结合域是一种理想的模型系统,因为它具有很大的生物医学价值
重要;它在实验和系统发育上是容易处理的;它对不同的DNA靶标具有特异性
通过一个众所周知的进化过程,具有一系列已知的历史突变和生物物理
机制。这项拟议的工作将揭示为什么这一历史相对于许多其他突变发生
当蛋白质进化出新的特异性时,它可能会采取的轨迹。利用序列空间的映射
另一方面,我们将对祖先蛋白质应用特定的、复制的实验进化,将其放置在
在强选择下探索序列空间并进化出它在
历史演变。通过识别历史轨迹之间的共性和差异,
实验进化轨迹,以及序列空间中的许多其他可能的路径,我们将
深入了解偶然性和决定论在进化中的作用,并阐明
导致这些现象的潜在机械因素。具体问题包括:有多少种方式
有没有进化出DNA的特异性,有多少在选择和漂移下是可获得的?
历史结果的演变是因为它是最理想的基因型,还是因为它是唯一的?
可获得的基因分型,还是仅仅是偶然的?如果存在更优的基因类型,是什么阻止了进化
从他们那里得到的蛋白质?新的特性必须在多大程度上通过混杂演变
中间体,以及需要多少突变才能进化出新的特异性?我们还将描述
存在于不同物种的古代受体周围的序列空间和实验进化轨迹
这将揭示蛋白质的进化性和稳健性是如何在
由于上位作用突变而产生的进化时间。最后,通过充分刻画主位和上位位
蛋白质的DNA专一性的遗传决定因素,我们将确定常见的生物物理机制
DNA识别是分子生物学、生物化学、细胞生物学、
和发展。我们开发的方法和概念工具将适用于研究其他
转录因子和许多其他蛋白质家族的进化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph W Thornton其他文献
Joseph W Thornton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph W Thornton', 18)}}的其他基金
Genetic and biophysical causes of historical protein evolution
历史蛋白质进化的遗传和生物物理原因
- 批准号:
10656347 - 财政年份:2022
- 资助金额:
$ 31.85万 - 项目类别:
Genetic and biophysical causes of historical protein evolution
历史蛋白质进化的遗传和生物物理原因
- 批准号:
10406781 - 财政年份:2022
- 资助金额:
$ 31.85万 - 项目类别:
Evolution of molecular complexes: genetic, structural, and functional mechanisms for the evolution of oligomers and allostery
分子复合物的进化:低聚物和变构进化的遗传、结构和功能机制
- 批准号:
9766019 - 财政年份:2019
- 资助金额:
$ 31.85万 - 项目类别:
Evolution of molecular complexes: genetic, structural, and functional mechanisms for the evolution of oligomers and allostery
分子复合物的进化:低聚物和变构进化的遗传、结构和功能机制
- 批准号:
10251124 - 财政年份:2019
- 资助金额:
$ 31.85万 - 项目类别:
Evolution of molecular complexes: genetic, structural, and functional mechanisms for the evolution of oligomers and allostery
分子复合物的进化:低聚物和变构进化的遗传、结构和功能机制
- 批准号:
10004121 - 财政年份:2019
- 资助金额:
$ 31.85万 - 项目类别:
Deep characterization of the sequence space and evolutionary trajectories of reconstructed ancestral proteins - Resubmission 01
重建祖先蛋白质的序列空间和进化轨迹的深度表征 - 重新提交 01
- 批准号:
9901582 - 财政年份:2017
- 资助金额:
$ 31.85万 - 项目类别:
Experimental and structural evolution of hormone receptors
激素受体的实验和结构进化
- 批准号:
8010260 - 财政年份:2010
- 资助金额:
$ 31.85万 - 项目类别:
Experimental and structural evolution of hormone receptors
激素受体的实验和结构进化
- 批准号:
7476575 - 财政年份:2007
- 资助金额:
$ 31.85万 - 项目类别:
Experimental and structural evolution of hormone receptors
激素受体的实验和结构进化
- 批准号:
7903434 - 财政年份:2007
- 资助金额:
$ 31.85万 - 项目类别:
Experimental and structural evolution of hormone receptors
激素受体的实验和结构进化
- 批准号:
7299563 - 财政年份:2007
- 资助金额:
$ 31.85万 - 项目类别:
相似海外基金
Cerebral infarction treatment strategy using collagen-like "triple helix peptide" containing functional amino acid sequence
含功能氨基酸序列的类胶原“三螺旋肽”治疗脑梗塞策略
- 批准号:
23K06972 - 财政年份:2023
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a screening method for functional microproteins independent of amino acid sequence conservation
不依赖氨基酸序列保守性的功能性微生物蛋白筛选方法的建立
- 批准号:
23KJ0939 - 财政年份:2023
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Effects of amino acid sequence and lipids on the structure and self-association of transmembrane helices
氨基酸序列和脂质对跨膜螺旋结构和自缔合的影响
- 批准号:
19K07013 - 财政年份:2019
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of electron-transfer amino acid sequence probe with an interaction for protein and cell
蛋白质与细胞相互作用的电子转移氨基酸序列探针的构建
- 批准号:
16K05820 - 财政年份:2016
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of artificial antibody of anti-bitter taste receptor using random amino acid sequence library
利用随机氨基酸序列库开发抗苦味受体人工抗体
- 批准号:
16K08426 - 财政年份:2016
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The aa15-17 amino acid sequence in the terminal protein domain of HBV polymerase as a viral factor affect-ing in vivo as well as in vitro replication activity of the virus.
HBV聚合酶末端蛋白结构域中的aa15-17氨基酸序列作为影响病毒体内和体外复制活性的病毒因子。
- 批准号:
25461010 - 财政年份:2013
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amino acid sequence analysis of fossil proteins using mass spectrometry
使用质谱法分析化石蛋白质的氨基酸序列
- 批准号:
23654177 - 财政年份:2011
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Precise hybrid synthesis of glycoprotein through amino acid sequence-specific introduction of oligosaccharide followed by enzymatic transglycosylation reaction
通过氨基酸序列特异性引入寡糖,然后进行酶促糖基转移反应,精确杂合合成糖蛋白
- 批准号:
22550105 - 财政年份:2010
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating selection on amino-acid sequence polymorphisms in Drosophila
果蝇氨基酸序列多态性选择的估计
- 批准号:
NE/D00232X/1 - 财政年份:2006
- 资助金额:
$ 31.85万 - 项目类别:
Research Grant
Construction of a neural network for detecting novel domains from amino acid sequence information only
构建仅从氨基酸序列信息检测新结构域的神经网络
- 批准号:
16500189 - 财政年份:2004
- 资助金额:
$ 31.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




