Motor cortical control of voluntary forelimb muscle activity
运动皮质控制自愿前肢肌肉活动
基本信息
- 批准号:9560617
- 负责人:
- 金额:$ 4.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAnimalsAxonBehaviorBehavior ControlBehavioral ParadigmCellsChronicContractsCuesDataElectrodesEnsureEquilibriumExtensorFelis catusFlexorForelimbGenerationsGoalsHumanImplantIndividualInjection of therapeutic agentInterneuronsJointsLabelLimb structureLocomotionMediatingMonkeysMotorMotor CortexMotor NeuronsMovementMusMuscleNeuronsOpticsPeriodicityPhasePlayPopulationProteinsRecruitment ActivityReportingResearchRoleRunningSensorySiliconSpinalSpinal CordSpinal cord injury patientsSubgroupSynapsesSystemTechniquesTestingTimeTrainingTriceps Brachii MuscleViral VectorVisualVolitionWidthbasebehavioral outcomebiceps brachii musclecell typeexperimental studyextracellularlimb movementmind controlmotor impairmentneural circuitneural prosthesisneurodevelopmentneuromechanismneuroregulationnoveloptogeneticsrelating to nervous systemselective expressionsensory feedbackstroke treatment
项目摘要
Project summary/abstract
The alternating contraction of opposing flexor and extensor muscles, known as antagonist pairs,
creates the rhythmic limb movement of locomotion. This phenomenon is regulated in part by reciprocal
inhibition: sensory feedback from an active muscle excites the Ia interneuron, which then inhibits that muscle's
antagonist. However, when a task requires limb stiffness and joint stability, this circuit must be overridden to
allow co-contraction of both flexor and extensor muscles. Previous studies have indicated that motor cortex is
responsible for the reduction of reciprocal inhibition observed during voluntary co-contraction, but its
mechanism of action is unknown. Elucidating how motor cortex recruits spinal circuits to permit antagonist
muscle co-contraction will further our understanding of the neural control of voluntary movement.
Monkey and cat studies have reported that intracortical inhibition is reduced during voluntary co-
contraction, indicating that this reduction may be necessary for co-contraction. Neural recording studies in
monkey found that a discrete population of corticospinal neurons (CSNs) increases its activity during co-
contraction but not during extension or flexion, indicating that increased CSN activity may be required for this
behavior. Of the CSNs, a subgroup that synapses on a type of spinal interneuron known as the GABApre
(CSN-GABApres) is a likely candidate for antagonist muscle control. This is supported by findings that indicate
the GABApre interneuron is capable of reducing reciprocal inhibition and that the type of inhibition GABApres
exert is increased during co-contraction. This evidence leads us to hypothesize that during this behavior,
intracortical inhibition is decreased, the activity of CSNs, in particular CSN-GABApres, is increased, and that
this activity is necessary for voluntary co-contraction.
To test these hypotheses, we will record motor cortical activity in mouse during a novel behavioral
paradigm that elicits either co-contraction or alternation of the forelimb triceps-biceps antagonist muscle pair.
Putative cortical interneurons will be identified by the width of their action potential waveform and CSNs will be
identified by optogenetic activation of their axons. A novel tracing technique will also allow the optical
identification of CSN-GABApres during recording. The importance of CSN and CSN-GABApre activity to the
reduction of spinal reciprocal inhibition and thus the execution of co-contraction will be tested by optogenetic
inactivation of these cells during co-contraction as compared to alternation. The findings generated by these
experiments will clarify the neural mechanisms that underlie the control of antagonist muscles and voluntary
movement. This information could eventually be applied to treatment for stroke and spinal cord injury patients
or contribute to the development of neural prostheses for movement-impaired individuals.
项目概要/摘要
相对的屈肌和伸肌的交替收缩,称为拮抗肌对,
创造有节奏的肢体运动。这种现象部分受到相互调节
抑制:来自活跃肌肉的感觉反馈会兴奋 Ia 中间神经元,然后抑制该肌肉的
对手。然而,当任务需要肢体僵硬和关节稳定性时,必须重写该电路以
允许屈肌和伸肌共同收缩。先前的研究表明运动皮层
负责减少自愿共同收缩期间观察到的相互抑制,但其
作用机制未知。阐明运动皮层如何招募脊髓回路以允许拮抗剂
肌肉共同收缩将进一步加深我们对随意运动的神经控制的理解。
猴子和猫的研究报告说,在自愿共同参与的过程中,皮质内抑制会减少。
收缩,表明这种减少可能是共同收缩所必需的。神经记录研究
猴子发现,皮质脊髓神经元(CSN)的离散群体在共同作用期间增加了其活性
收缩但不在伸展或屈曲期间,表明可能需要增加 CSN 活动
行为。在 CSN 中,一个与称为 GABApre 的脊髓中间神经元突触的亚组
(CSN-GABApres) 可能是拮抗肌控制的候选者。调查结果表明,这一点得到了支持
GABApre 中间神经元能够减少相互抑制,并且抑制类型 GABApres
共同收缩期间用力增加。这一证据使我们推测,在这种行为过程中,
皮质内抑制减少,CSN(特别是 CSN-GABApres)的活性增加,并且
这项活动对于自愿收缩是必要的。
为了测试这些假设,我们将记录小鼠在新的行为过程中的运动皮层活动
引起前肢三头肌-二头肌拮抗肌对的共同收缩或交替的范例。
假定的皮质中间神经元将通过其动作电位波形的宽度来识别,并且 CSN 将被
通过轴突的光遗传学激活来识别。一种新颖的追踪技术也将允许光学
记录过程中 CSN-GABApres 的识别。 CSN 和 CSN-GABApre 活性对
脊髓相互抑制的减少以及共同收缩的执行将通过光遗传学进行测试
与交替相比,这些细胞在共收缩期间失活。这些结果产生
实验将阐明控制拮抗肌和随意肌的神经机制
移动。这些信息最终可以应用于中风和脊髓损伤患者的治疗
或为运动障碍人士开发神经假体做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Louise Warriner其他文献
Claire Louise Warriner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 4.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 4.4万 - 项目类别:
Operating Grants














{{item.name}}会员




