Exploiting Metabolic Vulnerabilities in the PI3K and Akt Pathway in Cancer for Therapeutic Benefit
利用癌症 PI3K 和 Akt 通路中的代谢漏洞获得治疗效果
基本信息
- 批准号:9270532
- 负责人:
- 金额:$ 39.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-09 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdverse effectsAnabolismAntioxidantsBiological MarkersBreast Cancer CellBreast Cancer cell lineCancer PatientCell LineCellsCombined Modality TherapyCoupledCysteineDataDependenceDevelopmentEnzymesEquilibriumGenesGeneticGlutathioneGoalsGrowthHomocysteineIn VitroInterruptionLeadLesionMaintenanceMalignant NeoplasmsMammary NeoplasmsMeasuresMediatingMetabolicMetabolic PathwayMetabolismMethionineMonitorMutationNewly DiagnosedNutrientOncogenicOxidation-ReductionPTEN genePathway interactionsPhenotypePhosphatidylinositolsPhosphotransferasesPlayProcessProductionProtein IsoformsProto-Oncogene Proteins c-aktReduced GlutathioneRegulationRoleShunt DeviceSignal TransductionSpecificityStudy modelsSystemTherapeuticWorkaddictionaerobic glycolysiscancer initiationglucose metabolismin vivo Modelinterestmalignant breast neoplasmmetabolomicsnovel therapeuticspatient subsetsphosphoproteomicspublic health relevanceresponsetargeted treatmenttherapeutic biomarkertherapeutic targettranscription factortumortumor growthtumor initiationtumor progressionuptake
项目摘要
DESCRIPTION (provided by applicant): The central hypothesis of this application is that oncogenic PI3K/Akt signaling drives metabolic reprogramming to promote breast tumor initiation and progression, resulting in cancer-specific metabolic vulnerabilities that are therapeutically tractable. While there has been much interest in understanding how this pathway contributes to aerobic glycolysis in cancer, mechanisms by which PI 3-K/Akt signaling modulates other metabolic processes to synthesize metabolites required for tumor growth are not well defined. Using robust models for studying PI 3-K/Akt signaling in breast cancer, we propose a project to evaluate the metabolic changes mediated by PI3K/Akt to promote tumor initiation and progression, with a focus on two antioxidant pathways: (i) the synthesis of glutathione (GSH), the major cellular antioxidant, and (ii) the synthesis of cysteine, which is involved in multiple antioxidant systems, through the transsulfuration pathway. In Aim 1, we will extend our preliminary studies by evaluating the mechanisms by which oncogenic PI3K and Akt regulate GSH biosynthesis to modulate the cellular redox state. We will focus on the activation of Nrf2, a key transcription factor in the antioxidant defense system, as a major mechanism downstream of PI3K/Akt in GSH biosynthesis. We will evaluate the requirement for GSH biosynthesis in tumor initiation mediated by oncogenic PI3K/Akt and identify therapeutic strategies that exploit GSH dependence in tumor maintenance. In Aim 2, we will investigate the metabolic determinants for Akt2 specificity in the context of PTEN inactivation, with a focus on antioxidant metabolism. We will perform targeted metabolomics in PTEN-deficient cell lines coupled with SILAC phospho-proteomics to identify specific targets of Akt2, with prioritization focused on metabolic enzymes. We will also investigate the mechanistic basis for isoform-specific Akt2 substrate selection. These substrates may define potential therapeutic targets or biomarkers to guide specific therapies. In Aim 3, preliminary data indicate that a subset of breast cancer cells
preferentially shunt the metabolite homocysteine away from methionine synthesis via the methionine cycle and towards the production of cysteine through the transsulfuration pathway. Cysteine, in turn, is involved in multiple antioxidant systems, including the synthesis of GSH. Oncogenic Akt is sufficient to confer this phenotype. We will assess how PI3K/Akt regulates transsulfuration pathway genes and assess pathway activity by metabolic analyses. Finally, we will evaluate the transsulfuration pathway genes CBS and CTH as potential therapeutic targets in breast cancer. Identifying these mechanisms as critical determinants for initiation and progression of breast cancers addicted to oncogenic PI3K/Akt will spur development of new antagonists to target antioxidant metabolism through GSH biosynthesis and the transsulfuration pathway. Our findings will provide an integrated, mechanistic understanding of how oncogenic signaling interfaces with metabolic reprogramming and expose cancer-specific metabolic vulnerabilities that constitute new therapeutic opportunities for breast cancer.
描述(申请人提供):本申请的中心假设是致癌的PI3K/Akt信号驱动代谢重新编程,以促进乳腺癌的启动和进展,导致癌症特有的代谢脆弱性,这些脆弱性在治疗上是容易处理的。虽然人们很有兴趣了解这一途径如何在癌症的有氧糖酵解中起作用,但PI 3-K/Akt信号调节其他代谢过程以合成肿瘤生长所需代谢物的机制尚不清楚。利用稳健的模型研究PI3-K/Akt信号在乳腺癌中的作用,我们建议评估PI3K/Akt介导的促进肿瘤发生和发展的代谢变化,重点放在两条抗氧化途径上:(I)细胞内主要抗氧化剂谷胱甘肽(GSH)的合成和(Ii)半胱氨酸的合成,半胱氨酸通过跨硫途径参与多种抗氧化剂系统的合成。在目标1中,我们将通过评估致癌的PI3K和Akt调节GSH生物合成以调节细胞氧化还原状态的机制来扩展我们的初步研究。我们将重点关注Nrf2的激活,它是抗氧化防御系统中的关键转录因子,是GSH生物合成中PI3K/Akt下游的主要机制。我们将评估由致癌基因PI3K/Akt介导的肿瘤启动过程中对GSH生物合成的需求,并确定利用GSH依赖于肿瘤维持的治疗策略。在目标2中,我们将在PTEN失活的背景下研究Akt2特异性的代谢决定因素,重点是抗氧化剂代谢。我们将在PTEN缺陷的细胞系中进行靶向代谢组学,结合SILAC磷酸化蛋白质组学来确定Akt2的特定靶点,重点放在代谢酶上。我们还将研究异构体特异性Akt2底物选择的机制基础。这些底物可以定义潜在的治疗靶点或生物标记物来指导特定的治疗。在目标3中,初步数据表明,乳腺癌细胞的一个子集
优先通过蛋氨酸循环将代谢产物同型半胱氨酸从蛋氨酸合成转移到半胱氨酸的合成,并通过硫化途径转向半胱氨酸的生产。半胱氨酸反过来又参与多种抗氧化系统,包括GSH的合成。致癌基因Akt足以赋予这种表型。我们将评估PI3K/Akt如何调节跨硫途径基因,并通过代谢分析评估途径的活性。最后,我们将评估跨硫途径基因CBS和Cth作为乳腺癌潜在的治疗靶点。确定这些机制是PI3K/Akt致癌成瘾乳腺癌发生和发展的关键决定因素,将刺激新的拮抗剂的开发,通过GSH生物合成和跨硫途径靶向抗氧化剂代谢。我们的发现将提供一个综合的,机械性的理解,了解致癌信号如何与代谢重新编程相结合,并揭示构成乳腺癌新治疗机会的癌症特异性代谢脆弱性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Toker其他文献
Alex Toker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Toker', 18)}}的其他基金
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
FASEB 科学研究会议:蛋白激酶和蛋白磷酸化
- 批准号:
10464756 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
Discovery, Regulation and Function of the PI 3-Kinase and AKT Pathway in Cancer
PI 3 激酶和 AKT 通路在癌症中的发现、调节和功能
- 批准号:
10246864 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
Discovery, Regulation and Function of the PI 3-Kinase and AKT Pathway in Cancer
PI 3 激酶和 AKT 通路在癌症中的发现、调节和功能
- 批准号:
10677761 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
Discovery, Regulation and Function of the PI 3-Kinase and AKT Pathway in Cancer
PI 3 激酶和 AKT 通路在癌症中的发现、调节和功能
- 批准号:
10471296 - 财政年份:2020
- 资助金额:
$ 39.57万 - 项目类别:
Exploiting Metabolic Vulnerabilities in the PI3K and Akt Pathway in Cancer for Therapeutic Benefit
利用癌症 PI3K 和 Akt 通路中的代谢漏洞获得治疗效果
- 批准号:
9903255 - 财政年份:2016
- 资助金额:
$ 39.57万 - 项目类别:
Identifying lincRNAs that Mediate PI 3 Kinase Dependent Breast Cancer
鉴定介导 PI 3 激酶依赖性乳腺癌的 lincRNA
- 批准号:
8610428 - 财政年份:2014
- 资助金额:
$ 39.57万 - 项目类别:
Novel regulation of PI3K/Akt to direct targeted breast cancer therapies
PI3K/Akt 的新调控可指导乳腺癌靶向治疗
- 批准号:
9812868 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Novel regulation of PI3K/Akt to direct targeted breast cancer therapies
PI3K/Akt 的新调控可指导乳腺癌靶向治疗
- 批准号:
8870311 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Novel regulation of PI3K/Akt to direct targeted breast cancer therapies
PI3K/Akt 的新调控可指导乳腺癌靶向治疗
- 批准号:
8559337 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
Novel regulation of PI3K/Akt to direct targeted breast cancer therapies
PI3K/Akt 的新调控可指导乳腺癌靶向治疗
- 批准号:
8702122 - 财政年份:2013
- 资助金额:
$ 39.57万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 39.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 39.57万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




