Practical Significance of Effects from Growth Modeling of Alcohol Use Data

酒精使用数据增长模型影响的实际意义

基本信息

  • 批准号:
    9311360
  • 负责人:
  • 金额:
    $ 31.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

Abstract Longitudinal research on alcohol consumption, alcohol use disorders, and heavy episodic drinking often uses latent growth modeling analysis (GMA) and growth mixture modeling (GMM) to examine pathways to alcohol and drug abuse (including the risk and protective factors that predict them) or health consequences from abuse. Such studies of substance abuse trajectories are useful for understanding the etiology of alcohol and drug problems, and for informing efforts for both prevention and treatment. Examples of such prospective studies, both of which target adolescents, include NIAAA's National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) Study and NIDA's Adolescent Brain Cognitive Development (ABCD) Study. Both of these studies are also examples of big data—a current focus of NIH (e.g., their BD2K initiative)—in that they use hundreds or thousands of participants and are ideally suited for analyses with the GMA approach (which requires large samples). However, in spite of the widely recognized need for effect sizes and their confidence intervals (CIs) in statistical analyses, development of such statistics for findings from GMA and GMM has been limited. In our prior work, we have proposed a regression framework for effect size assessments and formulated an equation for a standardized effect size for GMA that transforms the trajectory difference into a standardized mean difference in the metric of Cohen's d, which is now widely used in the literature on randomized clinical trials (RCTs). We have also developed formulas for estimating the CI for the GMA effect size. We will first use that model to develop new statistics that fill critical gaps in our published work regarding GMA effect sizes and related statistics (e.g., SEs and CIs) for RCTs, which will provide a foundation for subsequent aims. Next, we will introduce new kinds of effect sizes for direct and indirect effects that would be useful to both GMA and non-GMA researchers examining mediation, although our secondary analyses that illustrate our methods will involve mediation in GMA. The proposed work will formulate equations for new effect sizes for GMA and GMM in different metrics, and Monte Carlo studies will be conducted to examine biases (and determine necessary sample sizes) for point estimates and CIs for the effect sizes for different types of GMA and GMM hypothesis tests commonly found in the literature. In addition, we will conduct a secondary analysis study of alcohol use data from both the current and previous National Longitudinal Surveys of Youth to examine whether, as predicted, the effects of gender and on growth, persistence, and desistance of alcohol use from the teen years into early adulthood has decreased between cohorts born 20 years apart—and to attempt to identify mediators responsible for the expected changes in effect sizes and whether mediation is moderated by other factors (e.g., ethnicity). Thus, this project would also illustrate the use of our new statistics in meta-analysis. Most important, we will publish tutorial articles to widely disseminate out derived equations for communicating the practical significance of findings from GMA and GMM.
摘要 关于酒精消费、酒精使用障碍和间歇性重度饮酒的纵向研究经常使用 潜在增长模型分析(GMA)和增长混合模型(GMM),以检查酒精的途径 和药物滥用(包括预测它们的风险和保护因素)或 虐待这种物质滥用轨迹的研究有助于了解酒精的病因, 毒品问题,并为预防和治疗工作提供信息。这种前景的例子 研究,这两个目标青少年,包括NIAAA的国家酒精联盟和 青少年神经发育(NCANDA)研究和NIDA的青少年大脑认知发育 (ABCD)学习。这两项研究也是大数据的例子-NIH目前的重点(例如,BD2K 倡议)-因为它们使用数百或数千名参与者,并且非常适合使用 全球海洋环境状况评估方法(需要大样本)。然而,尽管广泛认识到需要效应大小, 及其统计分析中的置信区间,为全球海洋环境状况评估的结果编制此类统计数据 而GMM是有限的。在我们之前的工作中,我们提出了一个回归框架的效果大小 评估,并制定了一个方程的标准化效应大小的全球海洋环境状况评估, 差异转化为科恩d度量中的标准化平均差异,科恩d度量现在广泛用于 随机临床试验(RCT)的文献。我们还开发了估算CI的公式, GMA效应量。我们将首先使用该模型开发新的统计数据,以填补我们已发表工作中的关键空白 关于GMA效应大小和相关统计(例如,SE和CI),这将为RCT提供基础 为了以后的目标。接下来,我们将为直接和间接效应引入新的效应量, 对研究调解的GMA和非GMA研究人员都有用,尽管我们的次要分析 说明我们方法将涉及全球海洋环境状况评估中的调解。拟议的工作将制定新的影响方程 在不同的度量中,GMA和GMM的大小,并将进行蒙特卡罗研究以检查偏差 (and确定必要的样本量)的点估计值和不同类型的效应量的CI GMA和GMM假设检验常见于文献中。此外,我们将进行第二次 对当前和以前的全国青年纵向调查中的酒精使用数据进行分析研究 研究是否如预测的那样,性别和对生长,持久性和戒酒的影响 从青少年到成年早期的使用在出生间隔20年的队列中有所减少, 试图确定负责效应量预期变化的调解人,以及调解是否 由其它因素调节(例如,种族)。因此,这个项目也将说明我们的新统计数据的使用情况 进行荟萃分析。最重要的是,我们将发表教程文章,广泛传播导出的方程 交流全球海洋环境状况评估和全球海洋监测结果的实际意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan J. Feingold其他文献

Alan J. Feingold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan J. Feingold', 18)}}的其他基金

Womens Substance Use and Intimate Partner Violence
女性药物滥用和亲密伴侣暴力
  • 批准号:
    7821366
  • 财政年份:
    2009
  • 资助金额:
    $ 31.46万
  • 项目类别:
Womens Substance Use and Intimate Partner Violence
女性药物滥用和亲密伴侣暴力
  • 批准号:
    7941738
  • 财政年份:
    2009
  • 资助金额:
    $ 31.46万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了