Regenerative potential of embryonic notochordal nucleus pulposus progenitors
胚胎脊索髓核祖细胞的再生潜力
基本信息
- 批准号:9225462
- 负责人:
- 金额:$ 21.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-03 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesBiologicalBiological Response Modifier TherapyCell Differentiation processCell SeparationCellsDepositionDevelopmentDiseaseEmbryoEmbryonic DevelopmentExhibitsExtracellular MatrixGrowth FactorHealthHydrostatic PressureImageImpairmentInjectableIntervertebral disc structureLow Back PainMapsMechanicsMediatingModelingMolecular ProfilingMusNatural regenerationOperative Surgical ProceduresPainPatternPopulationPositioning AttributePropertyProteoglycanRoleSignal PathwaySignal TransductionSourceStem cellsStructureSymptomsTherapeuticTimeTissuesTransgenic MiceWorkbasecell growthcell motilitydisc regenerationeffective therapyexperienceimprovedin vivoin vivo Modelinterestintervertebral disk degenerationmigrationmouse modelnotochordnovelnovel therapeuticsnucleus pulposuspostnatalprogenitorreduce symptomsregenerativespine bone structuretargeted treatmenttooltranscriptome sequencingtreatment strategy
项目摘要
Abstract
Lumbar intervertebral disc degeneration is a cascade of cellular, structural and mechanical changes
that is strongly implicated as a cause of low back pain. The central nucleus pulposus (NP) is implicated in the
initiation of this degenerative cascade, where decreasing proteoglycan content and an associated reduction in
hydrostatic pressure impair the ability of the NP to effectively engage the surrounding annulus fibrosus and to
evenly distribute and transfer compressive loads between the vertebrae. There is a critical need for therapies
for disc degeneration that restore disc structure and mechanical function by directly addressing the underlying
biological causes. A key challenge to developing effective biological treatments for disc degeneration is the
need to recapitulate the structural complexity and specialized extracellular matrix of the component tissues,
which comprise cells of multiple developmental lineages. Here we propose to address this challenge by
directly applying developmental paradigms to establish an optimized biological disc regeneration
strategy. Embryonic and postnatal disc formation is regulated by cells derived from the notochord. These cells
secrete an array of growth factors that regulate cell migration, proliferation, differentiation and extracellular
matrix deposition, and ultimately, directly give rise to the NP itself. There is therefore intense interest in
identifying notochordal cell-secreted factors and applying them to develop improved therapeutic strategies for
disc regeneration. The ideal stage to investigate the regenerative potential of notochordal cells is when they
are most actively contributing to embryonic and early postnatal disc development. Therefore the overall
objective of this proposal is to establish the regenerative potential of embryonic, notochord-derived
nucleus pulposus progenitor cells (NDCs). Specifically, we will define the growth factor expression profile of
NDCs at key stages of embryonic and postnatal disc development using whole transcriptome sequencing
(RNA-Seq), and directly establish the regenerative potential of NDCs as a function of developmental stage
using an in vivo mouse model of disc degeneration. The results of this work will provide a roadmap for
optimizing cell and growth factor-based therapeutics for disc regeneration.
抽象的
腰椎间盘退变是一系列细胞、结构和机械变化
这与腰痛的原因密切相关。中央髓核(NP)参与
这种退行性级联的启动,其中蛋白聚糖含量减少以及相关的减少
静水压力会损害 NP 有效接合周围纤维环的能力并影响
在椎骨之间均匀分布和转移压缩载荷。迫切需要治疗
针对椎间盘退变,通过直接解决底层问题来恢复椎间盘结构和机械功能
生物学原因。开发有效的生物治疗方法来治疗椎间盘退变的一个关键挑战是
需要概括组成组织的结构复杂性和专门的细胞外基质,
其中包含多个发育谱系的细胞。在这里,我们建议通过以下方式应对这一挑战:
直接应用发育范例建立优化的生物椎间盘再生
战略。胚胎和出生后椎间盘的形成受到脊索来源的细胞的调节。这些细胞
分泌一系列调节细胞迁移、增殖、分化和细胞外生长的生长因子
基质沉积,最终直接产生纳米粒子本身。因此人们对
识别脊索细胞分泌因子并应用它们来开发改进的治疗策略
椎间盘再生。研究脊索细胞再生潜力的理想阶段是当它们
对胚胎和产后早期椎间盘发育做出了最积极的贡献。因此总体
该提案的目的是确定胚胎、脊索来源的再生潜力
髓核祖细胞(NDC)。具体来说,我们将定义生长因子表达谱
使用全转录组测序研究胚胎和出生后椎间盘发育关键阶段的 NDC
(RNA-Seq),并直接建立 NDC 的再生潜力作为发育阶段的函数
使用椎间盘退变的体内小鼠模型。这项工作的结果将为
优化基于细胞和生长因子的椎间盘再生疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Malhotra其他文献
Neil Malhotra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Malhotra', 18)}}的其他基金
Dynamic heterogeneity of nucleus pulposus cells from development to degeneration
髓核细胞从发育到退化的动态异质性
- 批准号:
10401258 - 财政年份:2021
- 资助金额:
$ 21.94万 - 项目类别:
Neutralizing the degenerate disc microenvironment to enhance the efficacy of therapeutic stem cells
中和退化的椎间盘微环境以增强治疗干细胞的功效
- 批准号:
10337343 - 财政年份:2021
- 资助金额:
$ 21.94万 - 项目类别:
Neutralizing the degenerate disc microenvironment to enhance the efficacy of therapeutic stem cells
中和退化的椎间盘微环境以增强治疗干细胞的功效
- 批准号:
10536642 - 财政年份:2021
- 资助金额:
$ 21.94万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 21.94万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 21.94万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 21.94万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 21.94万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 21.94万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 21.94万 - 项目类别:














{{item.name}}会员




