Tissue Engineered Human Neuromuscular Junctions for Modeling Axonal Neuropathy
用于模拟轴突神经病的组织工程人类神经肌肉接头
基本信息
- 批准号:9235682
- 负责人:
- 金额:$ 34.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-11-15 至 2021-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimal ModelAutopsyAxonAxonal NeuropathyAxonal TransportBedsBiochemicalBiological AssayBiological ModelsBiomedical EngineeringBiophysicsBiopsyCell DensityCell LineCellsCharcot-Marie-Tooth DiseaseClinical TreatmentCoculture TechniquesCritical PathwaysDefectDevelopmentDiseaseDisease modelDrug DesignElectrophysiology (science)EngineeringEtiologyEvaluationExhibitsFunctional disorderFutureGene MutationGenerationsGenesGoalsHDAC6 geneHereditary Motor and Sensory-Neuropathy Type IIHumanHuman EngineeringImaging DeviceIn VitroInvestigationKnowledgeLimb structureMethodsMitochondriaModelingMolecularMotor NeuronsMuscleMuscle FibersMutationMyoblastsNeuromuscular JunctionNeuronsNeuropathyPathologicPathologyPathway interactionsPatientsPerformancePeripheralPeripheral Nervous System DiseasesPharmaceutical PreparationsPhenotypePhysiologicalPreclinical Drug EvaluationPresynaptic TerminalsPropertyRoleSamplingSeveritiesSignal TransductionSkeletal MuscleSourceStem cellsStimulusStructural defectStructureStudy modelsSymptomsSynapsesSystemTechniquesTestingTherapeuticTherapeutic InterventionTissue EngineeringTissuesValidationbaseconditioningdensitydisorder subtypehuman tissueimprovedin vitro activityin vivoinduced pluripotent stem cellinhibitor/antagonistinsightmalformationmouse modelmutantnanopatternnovelnovel therapeuticspre-clinicalpresynapticpreventrestorationscaffoldscreeningsynaptic functionsynaptogenesistargeted treatmenttheoriestherapeutic targetthree-dimensional modelingtooltrait
项目摘要
PROJECT SUMMARY
Charcot-Marie-Tooth disease type 2 (CMT2) is a severely debilitating axonopathic peripheral neuropathy,
characterized by neuromuscular junction (NMJ) breakdown, axonal transport defects, and neuronal structure
malformations. Although animal models for this condition are available, the wide array of gene mutations known
to cause a CMT2 phenotype (>30 identified to date) makes the study of common pathway deficits problematic.
This in turn makes identification of suitable therapeutic targets, capable of treating a wide range of patients,
extremely difficult. The successful generation of human induced pluripotent stem cell (hiPSC)-derived motor
neurons from patients with CMT2 makes the establishment of patient-specific humanized assays for studying
disease etiology a tangible goal. However, the ability to effectively model CMT2 in vitro using such cells has yet
to be achieved, due to the complexity associated with generating robust and functionally mature NMJs in culture.
We posit that a culture platform integrating correct tissue-level structural organization, physiologically relevant
cell densities, and correct electromechanical conditioning stimuli will promote the development of human
myotube-motor neuron co-cultures capable of supporting mature synapse formation. Using our well-established
nanopatterned cell sheet manipulation techniques, we will generate scaffold-free 3D tissue structures using
hiPSC-derived motor neurons and primary human myoblasts with highly ordered tissue structures. These
constructs will be assessed for their ability to promote NMJ formation, and electromechanical conditioning will
then be investigated as a means to drive synapse development. This system will be developed in conjunction
with motor neurons derived from four CMT2 patients. Co-culture constructs incorporating these cells will be
investigated for their capacity to accurately model the disease’s pathophysiology in vitro, and to highlight
phenotypic similarities across different mutant lines. Given the prominent role of mitochondria in NMJ
development, and the observed breakdown in axonal transport in multiple CMT2-related mutations, we
hypothesize that reduced mitochondrial density in presynaptic terminals leads to malformations in NMJ
development and ultimately breakdown of the synapse. We will use our CMT2 hiPSC-motor neurons to evaluate
axon transport deficits and structural malformations in these cells and correlate these findings with quantified
changes in NMJ development within our bioengineered co-culture platform. Finally, we will investigate whether
improvement in axon transport properties in multiple CMT2 neuron lines (via stabilization of axonal development
with histone deacetylase 6 inhibitors) results in significant improvements in NMJ development and stability in
human cells. Consistency of results across different patient mutations will highlight axonal transport deficits as a
major causal factor in the development of the human CMT2 phenotype, and validate our platform as a suitable
tool for use in the preclinical assessment of new drugs designed to ameliorate peripheral neuropathic conditions.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deok-Ho Kim其他文献
Deok-Ho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deok-Ho Kim', 18)}}的其他基金
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10502626 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10869757 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10861445 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别:
A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
- 批准号:
10632929 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10636892 - 财政年份:2022
- 资助金额:
$ 34.73万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10179233 - 财政年份:2021
- 资助金额:
$ 34.73万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10378025 - 财政年份:2021
- 资助金额:
$ 34.73万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10661492 - 财政年份:2021
- 资助金额:
$ 34.73万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10164856 - 财政年份:2020
- 资助金额:
$ 34.73万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 34.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists