A Human iPSC-based 3D Microphysiological System for Modeling Cardiac Dysfunction in Microgravity
基于人体 iPSC 的 3D 微生理系统,用于模拟微重力下的心脏功能障碍
基本信息
- 批准号:10632929
- 负责人:
- 金额:$ 32.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAgingAttenuatedBiological ModelsCardiacCardiomyopathiesCardiovascular systemCellsChronicCultured CellsDataDevelopmentDisease ProgressionDrug CompoundingEnvironmentExposure toExtracellular MatrixForce of GravityGenerationsGleanHeartHeart DiseasesHumanHuman bodyIn VitroInternationalInterventionKnowledgeLeadMagnetismMechanical StimulationMicrogravityMissionMyocardial dysfunctionMyocardiumOutcomes ResearchPatientsPhasePhysiologicalPlanet EarthPlanet MarsProcessRoleSourceSpace FlightStructureTechnologyTimeTissuesbasecardiac tissue engineeringcombatheart functionhuman modelimprovedinduced pluripotent stem cellinduced pluripotent stem cell derived cardiomyocytesmicrophysiology systemmotion sensornovelnovel therapeutic interventionscaffoldspace station
项目摘要
Contact PD/PI: Kim, Deok-Ho
PROJECT SUMMARY
Spaceflight has been shown to have a negative impact on the heart and the cardiovascular system. As we plan
for exploration class missions that will see humans spend longer periods of time in space, such as in a manned
missions to Mars, the potential impact of spaceflight on the heart and cardiovascular system will likely be
increased. Additionally, the effects of spaceflight on the human body appear to mimic an accelerated aging
process. Given that heart disease is the number one killer of all adults in the U.S., an understanding of the
cardiogenic effects of microgravity may have implications for helping to treat millions of heart disease patients
on Earth. Unfortunately, much is still unknown regarding the effect of spaceflight on the cardiovascular system
and the heart in particular. To address this issue, we will develop a high-throughput microphysiological model of
human cardiac muscle, derived from human induced pluripotent stem cells (hiPSCs), in order to study the effects
of microgravity on cardiac tissue structure and physiological function. We will combine this cell source with a
cardiac-specific decellularized extracellular matrix (dECM)-based electroconductive composite scaffold to
promote the maturation of cultured cells. The technologies developed during this study will facilitate the
generation of mature 3D engineered cardiac tissues that recapitulate the microarchitecture and function of
human myocardium. The data collected using this platform aboard the International Space Station (ISS) will
provide a better understanding of how prolonged microgravity affects the structure and function of the human
heart. During the UG3 phase of this proposal, we will assess differences in cardiac function and physiological
maturation between cells maintained in normal gravity and microgravity environments. Engineered heart tissues
(EHTs) made from hiPSC-derived cardiomyocytes will be flown aboard the ISS for one month and be compared
to identical ground controls. Real-time assessment of EHT contractility will be achieved via a novel magnetic
coil-based motion sensor array, facilitating real-time and continuous assessment of function with minimal
demands from the flight crew. Progressing to the UH3 phase, we will focus on the assessment of novel
therapeutic strategies with which to attenuate microgravity-induced cardiomyopathy. We will assess both drug
compounds and mechanical stimulation interventions and analyze each in isolation and in concert for their ability
to improve cardiac function in space. The outcomes of this research could further improve our understanding of
the progression of chronic heart diseases on Earth, and help drive the development of new therapeutic strategies
for these debilitating conditions.
Project Summary/Abstract Page 7
联系PD/PI:Kim,Deok-Ho
项目摘要
太空飞行已被证明对心脏和心血管系统有负面影响。按照我们的计划
对于探索类任务,人类将在太空中度过更长的时间,例如载人航天器
在火星任务中,太空飞行对心脏和心血管系统的潜在影响可能是
增加此外,太空飞行对人体的影响似乎模拟了加速老化
过程鉴于心脏病是美国所有成年人的头号杀手,的理解
微重力对心脏的影响可能有助于治疗数百万心脏病患者
地球上不幸的是,关于航天对心血管系统的影响,
尤其是心脏为了解决这个问题,我们将开发一个高通量的微生理模型,
来源于人诱导多能干细胞(hiPSC)的人心肌,以研究其作用
对心脏组织结构和生理功能的影响。我们将联合收割机这个细胞源与
基于心脏特异性脱细胞细胞细胞外基质(dECM)的生物相容性复合支架,
促进培养细胞的成熟。本研究期间开发的技术将促进
生成成熟的3D工程化心脏组织,其重现了心脏的微结构和功能,
人体心肌使用国际空间站(ISS)上的这个平台收集的数据将
更好地了解长期微重力如何影响人体的结构和功能
心在本提案的UG 3阶段,我们将评估心脏功能和生理学方面的差异。
在正常重力和微重力环境中维持的细胞之间的成熟。工程化心脏组织
由hiPSC衍生的心肌细胞制成的EHTs将在国际空间站上飞行一个月,
相同的地面控制。EHT收缩性的实时评估将通过一种新的磁共振成像技术来实现。
基于线圈的运动传感器阵列,便于以最小的
机组人员的要求。进入UH 3阶段,我们将重点评估新的
减轻微重力诱导的心肌病的治疗策略。我们将评估两种药物
化合物和机械刺激干预,并分析每一个孤立和协调一致的能力,
来改善太空中的心脏功能这项研究的结果可以进一步提高我们对
地球上慢性心脏病的进展,并帮助推动新的治疗策略的发展
来治疗这些虚弱的病症
项目摘要/摘要第7页
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biomanufacturing in low Earth orbit for regenerative medicine.
- DOI:10.1016/j.stemcr.2021.12.001
- 发表时间:2022-01-11
- 期刊:
- 影响因子:5.9
- 作者:Sharma A;Clemens RA;Garcia O;Taylor DL;Wagner NL;Shepard KA;Gupta A;Malany S;Grodzinsky AJ;Kearns-Jonker M;Mair DB;Kim DH;Roberts MS;Loring JF;Hu J;Warren LE;Eenmaa S;Bozada J;Paljug E;Roth M;Taylor DP;Rodrigue G;Cantini P;Smith AW;Giulianotti MA;Wagner WR
- 通讯作者:Wagner WR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deok-Ho Kim其他文献
Deok-Ho Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deok-Ho Kim', 18)}}的其他基金
High-throughput nanoIEA-based Assay for Screening Immune Cell-Vascular Interactions
用于筛选免疫细胞-血管相互作用的基于 nanoIEA 的高通量测定法
- 批准号:
10592897 - 财政年份:2023
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10502626 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10869757 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10861445 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Microphysiological Model of Human Cardiac Sympathetic Innervation
人类心脏交感神经支配的微生理模型
- 批准号:
10636892 - 财政年份:2022
- 资助金额:
$ 32.67万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10179233 - 财政年份:2021
- 资助金额:
$ 32.67万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10378025 - 财政年份:2021
- 资助金额:
$ 32.67万 - 项目类别:
Transcriptomic Entropy to Quantify Maturation of PSC-Derived Cardiomyocytes
转录组熵量化 PSC 衍生心肌细胞的成熟
- 批准号:
10661492 - 财政年份:2021
- 资助金额:
$ 32.67万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10164856 - 财政年份:2020
- 资助金额:
$ 32.67万 - 项目类别:
DISEASE MODELING AND PHENOTYPIC DRUG SCREENING FOR DYSTROPHIC CARDIOMYOPATHY
营养不良性心肌病的疾病建模和表型药物筛选
- 批准号:
10116566 - 财政年份:2020
- 资助金额:
$ 32.67万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 32.67万 - 项目类别:
Research Grant