The physiological role of RIPK3-dependent necroptosis
RIPK3依赖性坏死性凋亡的生理作用
基本信息
- 批准号:9193610
- 负责人:
- 金额:$ 44.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAlpha CellAntigen-Presenting CellsAntigensApoptosisApoptoticAutoimmune DiseasesAutomobile DrivingBacterial InfectionsBacterial ModelBacterial ToxinsBindingBioavailableCASP8 geneCaspase InhibitorCell DeathCell LineCell SurvivalCellsCessation of lifeChemicalsComplexEmergency SituationEventEvolutionGenesGeneticGenetic TranscriptionGrowthImmuneImmune responseImmune signalingImmune systemInfectionInflammatoryLeadLigationMalignant NeoplasmsMammalian CellManipulative TherapiesMediatingMessenger RNAModelingNF-kappa BNecrosisOutcomePathologicPathway interactionsPeptide HydrolasesPhagocytesPharmaceutical PreparationsPhosphorylationPhosphotransferasesPhysiologicalPlayProcessProtein InhibitionProtein Synthesis InhibitionProteinsRIPK3 geneReceptor SignalingRoleSignal TransductionSignaling MoleculeStressSystemT cell responseTNF geneTNFRSF1A geneTertiary Protein StructureTestingTissuesToll-like receptorsTranscriptional ActivationTranslationsUp-RegulationVirusVirus DiseasesVirus InhibitorsWorkadaptive immune responsecell typecellular sensitizationcytokinein vivoinhibitor/antagonistinsightinterestnovelparalogous genepreventprogramspublic health relevanceresponsetherapy designtooltumor progression
项目摘要
DESCRIPTION (provided by applicant): Tumor Necrosis Factor-� (TNF) and Toll-like receptor (TLR) signaling play key roles in coordinating immune responses, by driving the transcriptional activation of pro-inflammatory genes. However, it has long been recognized that they can also trigger apoptotic cell death. More recently, it has been shown that these signals can also induce another form of programmed cell death, called "necroptosis." While the discovery of necroptosis has generated considerable interest, the physiological role of this alternate cell death program remains elusive. In particular, necroptosis is blocked by the pro-apoptotic protease caspase-8, so most studies rely on genetic ablation or chemical inhibition of caspase-8 to trigger necroptosis. This raises a question: when does TNF or TLR-mediated necroptosis occur under physiological conditions? We have shown that caspase-8 must act in concert with its paralog FLIP to block necroptosis, and FLIP is potently up-regulated by TNF and TLR transcriptional signaling. Many types of infection and stress lead to inhibition of inflammatory signaling or general inhibition of protein synthesis. We therefore propose that the absence of FLIP-rather than inhibition of caspase-8-provides a general mechanism for cellular sensitization to necroptosis. We further hypothesize that necroptosis is itself inflammatory, because cells dying by necroptosis release damage- associated signaling molecules that activate immune cells. To address this possibility, we will focus on three specific questions: 1) How is the pro-necroptotic kinase RIPK3 activated, and how is this activation suppressed by caspase-8/FLIP? We have created a system in which multiple steps of RIPK3 can be controlled. We will use this system to test the hypothesis that RIPK3 activation requires phosphorylation- dependent assembly and propagation of a RIPK3 oligomer, and that caspase-8/FLIP directly blocks this process. 2) How is suppression of caspase-8/FLIP relieved to allow necroptosis under physiological conditions? We hypothesize that inhibitors of NF-kB signaling, or of general protein translation, sensitize cells to necroptosis by preventing FLIP expression. We will test this model in multiple cell types using pathologically relevant models of bacterial and viral infection, as well as ER stress. We will also consider how FLIP levels are controlled at both mRNA and protein levels. 3) How does the immune system respond to necroptotic vs. apoptotic cell death? We hypothesize that the mechanism by which a cell dies is important, because necroptosis releases inflammatory molecules that are contained or eliminated during apoptosis. To test this idea, we have created a system that allows us to trigger apoptosis or necroptosis using a non-toxic drug. We will use this system to analyze innate and adaptive immune responses to cell death. Together, the work proposed here seeks to understand the causes and consequences of necroptosis in vivo, and to thereby allow rational design of therapies that manipulate this process in infection, autoimmune disease, and cancer.
描述(由申请人提供):肿瘤坏死因子-α (TNF) 和 Toll 样受体 (TLR) 信号通过驱动促炎基因的转录激活,在协调免疫反应中发挥关键作用。然而,人们很早就认识到它们也可以引发细胞凋亡。最近,研究表明这些信号还可以诱导另一种形式的程序性细胞死亡,称为“坏死性凋亡”。虽然坏死性凋亡的发现引起了人们极大的兴趣,但这种替代性细胞死亡程序的生理作用仍然难以捉摸。特别是,坏死性凋亡被促凋亡蛋白酶 caspase-8 阻断,因此大多数研究依赖 caspase-8 的基因消融或化学抑制来触发坏死性凋亡。这就提出了一个问题:生理条件下TNF或TLR介导的程序性坏死何时发生?我们已经证明 caspase-8 必须与其旁系同源物 FLIP 协同作用来阻止坏死性凋亡,并且 FLIP 受到 TNF 和 TLR 转录信号传导的有效上调。许多类型的感染和应激会导致炎症信号传导的抑制或蛋白质合成的全面抑制。因此,我们认为 FLIP 的缺失(而不是 caspase-8 的抑制)提供了细胞对坏死性凋亡敏感的一般机制。我们进一步假设坏死性凋亡本身是炎症性的,因为因坏死性凋亡而死亡的细胞会释放与损伤相关的信号分子,从而激活免疫细胞。为了解决这种可能性,我们将重点关注三个具体问题:1)促坏死性激酶 RIPK3 是如何激活的,以及 caspase-8/FLIP 如何抑制这种激活?我们创建了一个可以控制 RIPK3 多个步骤的系统。我们将使用该系统来测试以下假设:RIPK3 激活需要 RIPK3 寡聚体的磷酸化依赖性组装和增殖,并且 caspase-8/FLIP 直接阻断该过程。 2) 如何解除 caspase-8/FLIP 的抑制,从而在生理条件下实现坏死性凋亡?我们假设 NF-kB 信号传导抑制剂或一般蛋白质翻译抑制剂通过阻止 FLIP 表达使细胞对坏死性凋亡敏感。我们将使用细菌和病毒感染以及内质网应激的病理相关模型在多种细胞类型中测试该模型。我们还将考虑如何在 mRNA 和蛋白质水平上控制 FLIP 水平。 3) 免疫系统如何应对坏死性细胞死亡和凋亡性细胞死亡?我们假设细胞死亡的机制很重要,因为坏死性凋亡会释放在细胞凋亡过程中被抑制或消除的炎症分子。为了测试这个想法,我们创建了一个系统,允许我们使用无毒药物触发细胞凋亡或坏死性凋亡。我们将使用该系统来分析对细胞死亡的先天性和适应性免疫反应。总之,这里提出的工作旨在了解体内坏死性凋亡的原因和后果,从而合理设计在感染、自身免疫性疾病和癌症中操纵这一过程的疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Atwell Oberst其他文献
Andrew Atwell Oberst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Atwell Oberst', 18)}}的其他基金
"Survivor" neurons drive persistent inflammation following West Nile virus infection
西尼罗河病毒感染后,“幸存者”神经元驱动持续炎症
- 批准号:
10731043 - 财政年份:2023
- 资助金额:
$ 44.29万 - 项目类别:
Activation of inflammatory programmed cell death by SARS-CoV-2
SARS-CoV-2 激活炎症性程序性细胞死亡
- 批准号:
10615162 - 财政年份:2022
- 资助金额:
$ 44.29万 - 项目类别:
Activation of inflammatory programmed cell death by SARS-CoV-2
SARS-CoV-2 激活炎症性程序性细胞死亡
- 批准号:
10450286 - 财政年份:2022
- 资助金额:
$ 44.29万 - 项目类别:
The Role of the RIP Kinases in Coordinating Neuroinflammation and Host Defense
RIP 激酶在协调神经炎症和宿主防御中的作用
- 批准号:
10326792 - 财政年份:2018
- 资助金额:
$ 44.29万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 44.29万 - 项目类别:
Research Grant