Transcriptional and Translational Profiling of Motor Neurons in Two Mouse Models of Charcot-Marie-Tooth Disease Type 2D
两种 2D 型腓骨肌萎缩症小鼠模型运动神经元的转录和翻译分析
基本信息
- 批准号:9256641
- 负责人:
- 金额:$ 2.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:4-thiouracilAdultAffectAfferent NeuronsAlpha CellAmino AcidsAmino Acyl-tRNA SynthetasesAminoacylationAxonBindingBiologyCatalogsCell CompartmentationCellsCharcot-Marie-Tooth DiseaseDataDefectDependenceDiseaseDominant-Negative MutationDrosophila genusGARS geneGenesGeneticGenetic TranscriptionGenotypeGoalsHomeostasisHumanImpairmentInheritedInjuryKDR geneLeadLinkLocationMessenger RNAModelingMotorMotor NeuronsMusMutant Strains MiceMutationNatural regenerationNatureNerve CrushNerve DegenerationNeuronsNeuropathyNeuropilin-1PathologicPatientsPeripheralPeripheral Nervous System DiseasesPhenotypeProcessProteinsPublic HealthRNARNA TransportRibosomesRoleSamplingSpecificitySpinal CordTechniquesTestingThiouracilTranslatingTranslationsWorkcell typedisease heterogeneityexperimental studygain of functionin vivomeetingsmouse modelmutantnovel therapeuticsoverexpressionregenerativesciatic nerve
项目摘要
PROJECT SUMMARY/ABSTRACT
How dominant mutations in glycyl tRNA synthetase (GARS) cause Charcot-Marie-Tooth disease Type 2D
(CMT2D) peripheral neuropathy is still unclear and controversial. The technical challenge of studying the
mammalian peripheral axon in vivo has contributed to the lack of a disease mechanism. The long-term goal of
this project is to understand how mutations in ubiquitously expressed GARS lead to the specific and
progressive degeneration of peripheral axons. The immediate objective is to use an in vivo, cell type- and
compartment-specific approach to test the hypothesis that mutations in Gars cause impaired translation in two
mouse models of CMT2D. Evidence points to a toxic gain-of-function of mutant GARS as the cause of
neuropathy, but a dominant negative mechanism has not been ruled out. In Drosophila, overexpression of
human mutant GARS in peripheral neurons causes neurodegeneration and reduced translation without altering
aminoacylation. Because at least four other tRNA synthetases are linked to Charcot-Marie-Tooth, impaired
translation is an attractive potential disease mechanism, and its detailed testing through the following
experiments will further elucidate the gain-of function vs. dominant negative question: 1) We will test the
hypothesis that mutant GARS impairs translation in motor neurons using two in vivo, cell type-specific
techniques; non-canonical amino acid-tagging (NCAT) will provide the location, identity, and quantity of newly
translated proteins, and ribosome-tagging will catalog ribosome-associated RNA. Motor neuron cell bodies are
gathered from the spinal cord and axons from the sciatic nerve, providing cell compartment-specificity.
Although local translation in adult, mammalian axons has not been established, it is required for normal
regeneration after injury and preliminary data show that ribosomes are present and associated with mRNA in
motor axons of the sciatic nerve. Wild-type sciatic nerve controls will be used to establish axonal translation.
2) We will test the hypothesis that translational impairments are independent of transcriptional changes.
Thiouracil (4-TU)-tagging, a third in vivo, cell type-specific technique, will be used to catalog newly transcribed
RNA in motor neuron cell bodies and newly transported RNA in axons. 3) Finally, we will test the hypothesis
that mutant Gars axons attempt regeneration, but fail because of impairments in translation. NCAT, ribosome-,
and 4-TU-tagging will be performed using wild-type regenerating motor neurons and the data compared to
Gars mutant samples. The proposed experiments will test a hypothesized disease mechanism and uncover
new motor neuron biology. Their completion will result in a comprehensive profile of translation and
transcription in CMT2D, wild-type, and regenerating wild-type motor neuron cell bodies and axons. Identifying
local translation in peripheral axons will represent a departure from the current model of axonal homeostasis,
revealing the axon as a cell compartment with unique translational needs and its own ways of meeting them.
Dependence of axons on local translation could explain their sensitivity to mutations in tRNA synthetases.
项目摘要/摘要
糖基TRNA合成酶(GARS)中的显性突变如何引起charcot-marie-tooth疾病2D
(CMT2D)周围神经病仍然不清楚并且有争议。研究的技术挑战
体内哺乳动物外周轴突已导致缺乏疾病机制。长期目标
该项目是要了解无用表达的GARS中的突变如何导致特定和
周围轴突的进行性变性。直接目标是使用体内,细胞类型和
隔室特异性方法是检验以下假设,即GARS中的突变导致两种情况下的翻译受损
CMT2D的鼠标模型。证据指出突变gars的功能障碍是
神经病,但尚未排除主导的负面机制。在果蝇中,过表达
外周神经元中的人类突变体GARS导致神经变性并减少翻译而不会改变
氨基酰化。因为至少有四个其他tRNA合成酶与charcot-marie-tooth有关
翻译是一种有吸引力的潜在疾病机制,其详细测试通过以下
实验将进一步阐明功能获得与主要负面问题:1)我们将测试
假设突变体使用两个体内细胞类型特异性的运动神经元中的翻译
技术;非典型氨基酸标签(NCAT)将提供新的位置,身份和数量
翻译的蛋白质和核糖体标记将分类核糖体相关的RNA。运动神经元细胞体是
从脊髓和轴突从坐骨神经中聚集,提供细胞室特异性。
尽管成人局部翻译,但尚未建立哺乳动物轴突,但正常需要
受伤后的再生和初步数据表明,核糖体存在并与mRNA相关
坐骨神经的运动轴突。野生型坐骨神经控制将用于建立轴突翻译。
2)我们将检验以下假设:翻译障碍与转录变化无关。
Thiouracil(4-Tu) - 标记,第三个体内,细胞类型特异性技术,将用于分类新转录
运动神经元细胞体中的RNA和轴突中新运输的RNA。 3)最后,我们将检验假设
那个突变的GARS轴突尝试再生,但由于翻译的损害而失败。 ncat,核糖体 - ,
将使用野生型再生运动神经元和数据进行4-TU标记
GARS突变样品。提出的实验将测试假设的疾病机制并发现
新的运动神经元生物学。他们的完成将导致翻译的全面概况和
CMT2D,野生型和再生野生型运动神经元细胞体和轴突的转录。识别
外围轴突中的局部翻译将代表与当前轴突稳态模型的背离,
将轴突揭示为具有独特的翻译需求及其满足它们的方式的单元格。
轴突对局部翻译的依赖性可以解释它们对tRNA合成酶突变的敏感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Louisa Spaulding其他文献
Emily Louisa Spaulding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Louisa Spaulding', 18)}}的其他基金
Understanding how Vasa Proteins Promote Cellular Pluripotency in the C. elegans Germline
了解 Vasa 蛋白如何促进线虫种系的细胞多能性
- 批准号:
10493182 - 财政年份:2021
- 资助金额:
$ 2.85万 - 项目类别:
Understanding how Vasa Proteins Promote Cellular Pluripotency in the C. elegans Germline (Childcare Costs Supplement)
了解 Vasa 蛋白如何促进线虫种系的细胞多能性(儿童保育费用补充)
- 批准号:
10505228 - 财政年份:2021
- 资助金额:
$ 2.85万 - 项目类别:
Understanding how Vasa Proteins Promote Cellular Pluripotency in the C. elegans Germline
了解 Vasa 蛋白如何促进线虫种系的细胞多能性
- 批准号:
10312175 - 财政年份:2021
- 资助金额:
$ 2.85万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 2.85万 - 项目类别:
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 2.85万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 2.85万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 2.85万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 2.85万 - 项目类别: