Mechanism of calcium phosphate stone formation in engineered 3D tubule

工程 3D 肾小管中磷酸钙结石形成机制

基本信息

项目摘要

Project Summary/Abstract Renal Calcium phosphate (CaP) and CaP plus Calcium Oxalate (CaOx) mixed crystal biomineralization results in diseases such as nephrolithiasis, which affect over 10% of adults in the United States, accounting for over $5 billion in economic costs in this country each year. The recurrence rate of nephrolithiasis is often high, reaching almost 50% over a 5-year period. Despite extensive research being conducted over the past century, the mechanism by which crystals nucleate, grow, and aggregate into stones is still poorly understood. This program seeks to improve our understanding of the origin and mechanism of such biologically controlled mineralization by developing a novel microfluidic-based workbench that can simulate the dynamical biological conditions of an in vivo renal tubular system. We hypothesize that mimicking the process of in vivo CaP deposition within this ex vivo tubular model created in microfluidics will enable us to systematically evaluate the multifactorial mechanism of CaP crystal formation by analyzing the contribution of each dynamic microenvironmental cue (e.g., cellular regulations, fluidic hydrodynamics and physiochemical interactions). Further, we believe that the combination of in situ characterization techniques and in vivo-like 3D tubular microenvironment generated in microfluidics will enable us to achieve a better understanding of the process of CaP stone formation at molecular and cellular level. Our program is novel in its approach to examine the mechanism of CaP stone formation in in vivo-like tubules with continuous renal fluidic flow. Unlike previous attempts, we propose to in situ map the compositions of renal fluids and solid mineral depositions in renal tubular structures with continuous flow of fluids, which will enable us to capture the most relevant molecular, cellular and hydrodynamic information that are not attainable by conventional approaches. Further, our specialized ex vivo tools can dissect the details of the complex in vivo event, revolutionizing our understanding of stone formation at the systems level. This research program involves two objectives: i) To understand the cellular interaction with CaP crystals under the influence of hydrodynamic renal fluid flow within 3D ex vivo renal tubular structure engineered in microfluidics, and ii) To understand the role of physiologically and clinically relevant molecules in the retention, dissolution, growth of CaP and/or CaOx crystals within the MF- based ex vivo renal tubular structure. The proposed study will lead us to i) find strategies to prevent and treat calcium stone disease in kidney; ii) gain new insights on the abnormal CaP deposition in soft tissues (namely, extra-skeletal calcification); and iii) open up exciting research fronts in understanding the molecular and pharmacological basis of CaP stone formation in vascular and other similar cellular microenvironments. Because the approach is so new, we are requesting an exploratory grant to develop the enabling techniques required for the elucidation of the general mechanism of stone formation. Our objective is to demonstrate the feasibility of our approach from a fundamental science, engineering and biological perspective.
项目总结/摘要 肾脏磷酸钙(CaP)和CaP加草酸钙(CaOx)混合晶体生物矿化结果 在美国,肾结石等疾病影响超过10%的成年人,占美国人口的10%以上。 每年在这个国家造成50亿美元的经济损失。肾结石的复发率往往很高, 在五年内达到近50%。尽管在过去的世纪进行了广泛的研究, 晶体成核、生长和聚集成石头的机制仍然知之甚少。这 该计划旨在提高我们对这种生物控制的起源和机制的理解。 通过开发一种新型的基于微流体的工作台,可以模拟动态生物矿化, 体内肾小管系统的条件。我们假设,模拟体内钙磷代谢过程 在微流体中产生的这种离体管状模型内的沉积将使我们能够系统地评估 通过分析各动力学因素对CaP晶体形成的贡献, 微环境线索(例如,细胞调节、流体流体动力学和生理化学相互作用)。 此外,我们认为,结合原位表征技术和体内类3D管状 在微流体中产生的微环境将使我们能够更好地理解 钙磷结石形成的分子和细胞水平。我们的计划是新颖的,在其方法来研究 CaP结石形成的机制在体内样小管与连续肾流体流。不同于以往 尝试,我们建议原位映射肾液和固体矿物沉积物的组成,在肾 管状结构与连续流动的流体,这将使我们能够捕捉最相关的分子, 细胞和流体动力学信息,这是传统方法无法获得的。此外,我们的 专门的体外工具可以剖析复杂的体内事件的细节,彻底改变我们的理解 在系统层面上形成石头。这项研究计划涉及两个目标:一)了解 在离体三维肾流体动力学流动的影响下细胞与CaP晶体的相互作用 在微流体中工程化的肾小管结构,和ii)为了理解生理和 在MF内的CaP和/或CaOx晶体的保留、溶解、生长中的临床相关分子, 基于离体肾小管结构。这项拟议中的研究将引导我们i)找到预防和治疗的策略 肾脏中的钙结石疾病; ii)获得对软组织中异常CaP沉积的新认识(即, 骨骼外钙化);和iii)在理解分子和 在血管和其他类似的细胞微环境中CaP结石形成的药理学基础。 因为这种方法是如此的新,我们正在申请一笔探索性的赠款,以开发这种使能技术。 这是阐明结石形成的一般机制所必需的。我们的目标是展示 从基础科学、工程学和生物学的角度来研究我们的方法的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bidhan Chandra Bandyopadhyay其他文献

Bidhan Chandra Bandyopadhyay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bidhan Chandra Bandyopadhyay', 18)}}的其他基金

Alleviation of chronic TBI through modulation of calcium signaling
通过调节钙信号传导缓解慢性 TBI
  • 批准号:
    10700780
  • 财政年份:
    2023
  • 资助金额:
    $ 22.18万
  • 项目类别:
Mechanism of calcium phosphate stone formation in engineered 3D tubule
工程 3D 肾小管中磷酸钙结石形成机制
  • 批准号:
    9851212
  • 财政年份:
    2017
  • 资助金额:
    $ 22.18万
  • 项目类别:
Calcium transport in kidney proximal tubule and calcium phosphate stone formation
肾近曲小管中的钙转运和磷酸钙结石的形成
  • 批准号:
    9322613
  • 财政年份:
    2015
  • 资助金额:
    $ 22.18万
  • 项目类别:
Calcium transport in kidney proximal tubule and calcium phosphate stone formation
肾近曲小管中的钙转运和磷酸钙结石的形成
  • 批准号:
    9765294
  • 财政年份:
    2015
  • 资助金额:
    $ 22.18万
  • 项目类别:
Function of TRPC3 in salivary gland
TRPC3在唾液腺中的功能
  • 批准号:
    8240207
  • 财政年份:
    2010
  • 资助金额:
    $ 22.18万
  • 项目类别:
Function of TRPC3 in salivary gland
TRPC3在唾液腺中的功能
  • 批准号:
    7789983
  • 财政年份:
    2010
  • 资助金额:
    $ 22.18万
  • 项目类别:
Function of TRPC3 in salivary gland
TRPC3在唾液腺中的功能
  • 批准号:
    8064722
  • 财政年份:
    2010
  • 资助金额:
    $ 22.18万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.18万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了