Models for synthesising molecular, clinical and epidemiological data, and transla
用于合成分子、临床和流行病学数据以及翻译的模型
基本信息
- 批准号:9279143
- 负责人:
- 金额:$ 20.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAnimalsAntibioticsAntigenic VariationAreaBiologicalBiologyCellsClinicalClinical DataCommunicable DiseasesCommunitiesComplexComputer SimulationCoronaviridaeCoronavirusCoupledDataData AnalysesData SetDevelopmentDiseaseDisease OutbreaksEconomicsEmerging Communicable DiseasesEpidemicEpidemiologyEvolutionFaceFrequenciesFundingGenerationsGeneric DrugsGeneticGenotypeHospitalizationHumanImmune systemImmunological ModelsIncidenceIndividualInfectionInfectious Disease EpidemiologyInfluenzaInfluenza A virusInterventionJointsKnowledgeLocationMachine LearningMapsMedicineMethodologyMethodsMiddle EastMiddle East Respiratory Syndrome CoronavirusModelingMolecularMonte Carlo MethodMovementNatural HistoryPatternPersonsPhenotypePneumococcal InfectionsPoliciesPolicy MakerPopulationProcessPublic HealthRecording of previous eventsResearchResearch MethodologySerologic testsSerologicalShapesSiteSpatial DistributionSpecific qualifier valueSpecificityStreamStreptococcus pneumoniaeSyndromeTestingTimeVaccinationVaccinesVariantVirusWorkage groupalgorithmic methodologiesbasecontextual factorsdata exchangedata miningdesigndigitaldisease natural historydisease transmissionepidemiologic dataepidemiological modelforestgenetic evolutionhigh dimensionalityimprovedinfectious disease modelinnovationinsightmathematical modelmeetingsmortalitynovelnovel strategiesnovel viruspandemic influenzapathogenpredictive modelingpredictive toolspublic health relevanceresistant strainseasonal influenzasimulationsocialsurveillance datatooltransmission processvirus genetics
项目摘要
DESCRIPTION (provided by applicant): A mathematical or computational model of infectious disease transmission represents the process of how an infection spreads from one person to another. Such models have a long history within infectious disease epidemiology, and are useful tools for giving insight into the dynamics of epidemics and for evaluating the potential effect of control methods. The overall objective of this project is to substantially improve the methods by which models of infectious diseases transmission are calibrated against biological and disease surveillance data. This will both improve the utility of models as tools for analyzing data on infectious disease outbreaks (for instance to provide more rapid and reliable estimates of how transmissible and lethal a new virus is to public health agencies) and also improve the reliability
of models as tools for predicting the likely effect of different interventions (such as vaccines or
case isolation) to help policy makers make more informed decisions about control policies. As with many areas of biology and medicine, the data landscape for infectious diseases modeling is changing rapidly. Larger and more complex datasets are becoming available that cover many different aspects of the interaction between a pathogen and the human population: clinical episode data, genetic data about fast-evolving pathogens; animal-model transmission data and community-based representative serological data. The specific aims of our project are to: (a) develop new machine-learning based methods to discover interesting patterns in complex datasets related to the transmission of infectious disease, so as to better specify subsequent mechanistic mathematical or computational models; (b) derive new approaches for using more than one type of data simultaneously to calibrate transmission models and (c) derive new methods of parameter estimation for simulations which model the spatial spread of infection or model both the transmission and genetic evolution of a pathogen. We will achieve these aims in the applied context of research on three key infections: emerging infectious diseases (such as MERS-CoV - the novel coronavirus currently spreading in the Middle East), influenza and Streptococcus pneumonia (a major bacterial pathogen). Examples of the scientific questions we will address that cannot be answered with current methods are: (i) how many unobserved cases of MERS-CoV have occurred so far (to be answered using data on case clusters data, the spatial distribution of cases and viral genetic sequences)? (ii) how many people in different age groups are infected with influenza each year and how does their immune system respond to infection (to be answered using data on case incidence and serological testing of the population)? (iii) how much is vaccination coupled with prescribing practices influencing the emergence of resistant strains of pneumococcus (to be addressed with data on antibiotic and vaccine use, case incidence and bacterial strain frequency)?
描述(由申请人提供):传染病传播的数学或计算模型代表了感染如何从一个人传播到另一个人的过程。这种模型在传染病流行病学领域有着悠久的历史,是深入了解流行病动态和评估控制方法潜在效果的有用工具。该项目的总体目标是大幅度改进传染病传播模型根据生物和疾病监测数据进行校准的方法。这将提高模型作为分析传染病爆发数据的工具的效用(例如,为公共卫生机构提供关于新病毒的传播和致命程度的更快速和可靠的估计),并提高可靠性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SIMON CAUCHEMEZ其他文献
SIMON CAUCHEMEZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SIMON CAUCHEMEZ', 18)}}的其他基金
Models for synthesising molecular, clinical and epidemiological data, and transla
用于合成分子、临床和流行病学数据以及翻译的模型
- 批准号:
9495704 - 财政年份:2014
- 资助金额:
$ 20.28万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 20.28万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 20.28万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 20.28万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 20.28万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 20.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 20.28万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 20.28万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 20.28万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 20.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 20.28万 - 项目类别:
Studentship