Statistical and Computational Methods for Large-Scale Sequencing Studies

大规模测序研究的统计和计算方法

基本信息

  • 批准号:
    9377731
  • 负责人:
  • 金额:
    $ 24.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-19 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): The primary goal of this proposal is to support Dr. Han Chen's career development in transition from a trainee into an independent researcher in statistical genetics and genomics with expertise in large-scale sequencing association studies for complex diseases and traits, such as cardiovascular, respiratory, metabolic diseases, including Coronary Heart Disease (CHD), hypertension, asthma, Acute Lung Injury / Acute Respiratory Distress Syndrome (ALI/ARDS), Obstructive Sleep Apnea (OSA) and Type 2 Diabetes (T2D). Dr. Chen is currently a postdoctoral research fellow in the Department of Biostatistics at Harvard T. H. Chan School of Public Health, and he has developed statistical methods for genome-wide association studies (GWAS), sequencing association studies and meta-analysis. Minority ethnic groups in the United States such as African- Americans and Hispanic-Americans have previously been underrepresented in genetic association studies. There is an increasingly pressing need to design and conduct GWAS and sequencing studies to better understand, prevent and treat complex diseases in these ethnic groups. To achieve this goal, it is important to develop advanced statistical and computational methods to address the challenges in analyzing these data. Specifically, the applicant proposes to develop statistical and computational methods to 1) account for population structure and relatedness in sequencing studies; and 2) test for genetic heterogeneity and test for gene-environment interaction accounting for heterogeneous environmental effects in trans-ethnic sequencing studies. This will provide new insights into biological functional studies, more accurate disease risk prediction, and advance personalized medicine. The proposed methods will be applied to ongoing sequencing studies for OSA, a condition that affects more than 10% of the population in the United States, especially African- Americans and Hispanic-Americans, and is associated with profound cardio-metabolic morbidity. During the mentored period, the applicant will learn more about modern statistical models for correlated data analysis such as advanced parametric, semiparametric, and additive mixed models, and develop the new statistical frameworks for the proposed research under the guidance of Dr. Xihong Lin (primary mentor). The applicant will also expand knowledge on complex human diseases under the guidance of Dr. Susan Redline (co-mentor), and broaden his background in population genetics and computer science through coursework, workshops and seminars. With skills acquired in the mentored period, the applicant will adapt the statistical models to different data and research questions, and apply them in sequencing association studies to better understand the genetic architecture of complex human diseases. Upon the completion of this award, the applicant will have become a productive and independent researcher in statistical genetics and genomics with expertise in large- scale sequencing studies with applications to complex human disease research.


项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Han Chen其他文献

Han Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Han Chen', 18)}}的其他基金

Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
  • 批准号:
    9816600
  • 财政年份:
    2019
  • 资助金额:
    $ 24.86万
  • 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
  • 批准号:
    10439679
  • 财政年份:
    2019
  • 资助金额:
    $ 24.86万
  • 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
  • 批准号:
    10670745
  • 财政年份:
    2019
  • 资助金额:
    $ 24.86万
  • 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
  • 批准号:
    9978093
  • 财政年份:
    2019
  • 资助金额:
    $ 24.86万
  • 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
  • 批准号:
    10199014
  • 财政年份:
    2019
  • 资助金额:
    $ 24.86万
  • 项目类别:
Statistical and Computational Methods for Large-Scale Sequencing Studies
大规模测序研究的统计和计算方法
  • 批准号:
    9013897
  • 财政年份:
    2015
  • 资助金额:
    $ 24.86万
  • 项目类别:

相似海外基金

Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
  • 批准号:
    10648387
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
Lung epithelial cell-derived C3 in acute lung injury
肺上皮细胞衍生的 C3 在急性肺损伤中的作用
  • 批准号:
    10720687
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
Examining the role of TRMT1 and tRNA methylation in acute lung injury and ARDS
检查 TRMT1 和 tRNA 甲基化在急性肺损伤和 ARDS 中的作用
  • 批准号:
    10719249
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
Inducible HMGB1 antagonist for viral-induced acute lung injury.
诱导型 HMGB1 拮抗剂,用于治疗病毒引起的急性肺损伤。
  • 批准号:
    10591804
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
MAP2K1 AND MAP2K2 IN ACUTE LUNG INJURY AND RESOLUTION
MAP2K1 和 MAP2K2 在急性肺损伤中的作用及缓解
  • 批准号:
    10741574
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
Development of a new treatment for COVID-19-related acute lung injury targeting the microbiota-derived peptide corisin
针对微生物群衍生肽 corisin 开发治疗 COVID-19 相关急性肺损伤的新疗法
  • 批准号:
    23K07651
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probing immunovascular mechanobiology in pneumonia-associated acute lung injury at the single capillary level
在单毛细血管水平探讨肺炎相关急性肺损伤的免疫血管力学生物学
  • 批准号:
    10679944
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
The amyloid precursor protein protects against acute lung injury
淀粉样前体蛋白可预防急性肺损伤
  • 批准号:
    10575258
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
Role of macrophages and miRNA in regulating lung macrophage polarization and lung pathogenesis during respiratory virus-induced acute lung injury in normal and diabetic Syrian hamsters.
正常和糖尿病叙利亚仓鼠呼吸道病毒引起的急性肺损伤期间巨噬细胞和 miRNA 在调节肺巨噬细胞极化和肺部发病机制中的作用。
  • 批准号:
    10701207
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
Roles of N-glycans on neutrophil beta2 integrins in progression of acute lung injury
N-聚糖对中性粒细胞β2整合素在急性肺损伤进展中的作用
  • 批准号:
    10837431
  • 财政年份:
    2023
  • 资助金额:
    $ 24.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了