Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
基本信息
- 批准号:10439679
- 负责人:
- 金额:$ 79.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAgeAgingAlgorithmsAll of Us Research ProgramAspirinBenchmarkingBloodCardiometabolic DiseaseClinical DataCloud ComputingCollaborationsCommunitiesComplexComputational algorithmComputer softwareDataData CommonsDiseaseEnvironmentEnvironmental ExposureEpidemiologyEthnic OriginEtiologyFAIR principlesFoundationsFutureGenesGeneticGenetic VariationGenome ScanGenomicsHabitsHeartHeart DiseasesHematological DiseaseInterventionLife StyleLungLung diseasesMethodsModelingNational Heart, Lung, and Blood InstituteObesityPharmacologyPhysiologicalPlayPrecision HealthPreventionPrevention strategyProceduresRaceResearchResearch DesignResearch PersonnelResourcesRisk FactorsRoleSample SizeSamplingSchemeSleep DisordersSmokingStatistical MethodsStatistical ModelsTechnologyTestingToxinTrans-Omics for Precision MedicineUnited States National Institutes of HealthVariantVeteransWeightanalysis pipelineanalytical toolbasebiobankbiomedical resourcecardiometabolismcloud basedcohortcostdisorder preventiondisorder riskflexibilityfunctional genomicsgene environment interactiongenetic architecturegenetic associationgenetic variantgenome sequencinggenome wide association studygenomic datagenomic epidemiologyhealth disparityhealth managementhuman diseaseinsightnon-geneticopen sourcepersonalized interventionphenotypic dataprecision medicineprogramsracial and ethnic disparitiesrare variantrisk predictionscale upsexsoftware developmenttooltraittreatment effecttreatment strategyuser friendly softwareuser-friendlywhole genomeworking group
项目摘要
PROJECT SUMMARY/ABSTRACT
Complex human diseases and related quantitative traits are the interplay of many risk factors, including genetic
and environmental components. Gene-environment interaction studies are a general framework that can be used
to identify genetic variations that modify environmental, physiological, lifestyle, or treatment effects, as well as
those contributing to age, sex, racial/ethnic disparities on complex traits. Moreover, genetic association studies
accounting for gene-environment interactions are conducted to enhance our understandings on the genetic
architecture of complex diseases by allowing for different genetic effects in different exposure strata. With the
recent advances in technology and lowering costs, genetic and genomic data are being generated on very large
scales. However, commonly used statistical software programs for gene-environment interaction studies were
generally developed many years ago, and their computational algorithms have not been optimized to analyze
hundreds of thousands to millions of samples from possibly complex study designs. To fill in the gap between
current and future analytical needs in large-scale gene-environment interaction studies and current analytical
solutions, we plan to (Aim 1) develop efficient algorithms for common variant gene-environment interaction
analyses that scale linearly with the sample size; (Aim 2) develop new statistical tests for rare variant gene-
environment interaction analyses, in the mixed effects model framework for correlated samples; and (Aim 3)
implement proposed statistical methods and computational algorithms in open-source new software programs.
Our Aim 1 addresses current computational challenges in conducting gene-environment interaction studies in
up to millions of samples. In Aim 2, we plan to solve statistical and computational challenges in gene-environment
interaction analyses of large-scale whole genome sequencing data, accounting for relatedness, complex study
designs, as well as model misspecification. Aim 3 focuses on software development and we will deliver well-
documented and user-friendly software packages and analysis pipelines for large-scale gene-environment
interaction studies. The methods and software programs will be applied to ongoing whole genome sequencing
projects, as well as biobank-scale data, and they will significantly facilitate the use of large-scale genetic and
genomic data for gene-environment interaction studies in upcoming years to better understand the genetic basis
of complex cardio-metabolic, lung, blood, sleep diseases and their age, sex, racial/ethnic disparities, and
promote personalized disease prevention and treatment strategies in precision health research.
项目总结/摘要
复杂的人类疾病和相关的数量性状是许多风险因素的相互作用,包括遗传因素,
和环境成分。基因-环境相互作用研究是一个通用的框架,
识别改变环境、生理、生活方式或治疗效果的遗传变异,以及
那些导致复杂特征上的年龄、性别、种族/民族差异的因素。此外,遗传关联研究
解释基因与环境的相互作用,以加强我们对遗传的理解,
通过考虑不同暴露层的不同遗传效应,对复杂疾病的结构进行了研究。与
随着技术的进步和成本的降低,基因和基因组数据正在大规模地产生,
鳞片然而,用于基因-环境相互作用研究的常用统计软件程序
通常是在多年前开发的,并且它们的计算算法还没有被优化以分析
从可能复杂的研究设计中获得数十万到数百万的样本。为了填补之间的差距
大规模基因-环境相互作用研究中当前和未来的分析需求以及当前的分析需求
解决方案,我们计划(目标1)开发有效的算法,常见的变异基因-环境相互作用
分析,规模与样本量线性;(目标2)开发新的统计检验罕见变异基因-
环境相互作用分析,在相关样本的混合效应模型框架内;以及(目标3)
在开源新软件程序中实现所提出的统计方法和计算算法。
我们的目标1解决了当前在进行基因-环境相互作用研究中的计算挑战,
多达数百万个样本。在目标2中,我们计划解决基因环境中的统计和计算挑战
大规模全基因组测序数据的相互作用分析,解释相关性,复杂研究
设计,以及模型错误。目标3专注于软件开发,我们将出色地交付-
用于大规模基因环境的文档化和用户友好的软件包和分析管道
互动研究该方法和软件程序将应用于正在进行的全基因组测序
项目,以及生物库规模的数据,它们将大大促进大规模基因和
基因组数据,用于未来几年的基因-环境相互作用研究,以更好地了解遗传基础
复杂的心脏代谢、肺、血液、睡眠疾病及其年龄、性别、种族/民族差异,以及
在精准健康研究中推广个性化疾病预防和治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han Chen其他文献
Han Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han Chen', 18)}}的其他基金
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
9816600 - 财政年份:2019
- 资助金额:
$ 79.66万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
10670745 - 财政年份:2019
- 资助金额:
$ 79.66万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
9978093 - 财政年份:2019
- 资助金额:
$ 79.66万 - 项目类别:
Methods and Software for Large-Scale Gene-Environment Interaction Studies
大规模基因-环境相互作用研究的方法和软件
- 批准号:
10199014 - 财政年份:2019
- 资助金额:
$ 79.66万 - 项目类别:
Statistical and Computational Methods for Large-Scale Sequencing Studies
大规模测序研究的统计和计算方法
- 批准号:
9377731 - 财政年份:2016
- 资助金额:
$ 79.66万 - 项目类别:
Statistical and Computational Methods for Large-Scale Sequencing Studies
大规模测序研究的统计和计算方法
- 批准号:
9013897 - 财政年份:2015
- 资助金额:
$ 79.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 79.66万 - 项目类别:
Research Grant