Systematic Multi-scale Analysis of Tissue Morphogenesis

组织形态发生的系统多尺度分析

基本信息

  • 批准号:
    9311707
  • 负责人:
  • 金额:
    $ 36.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

Systematic Multi-scale Analysis of Tissue Morphogenesis Recent progress in live imaging offers unprecedented opportunities to examine cellular behaviors and how cell- cell interactions give rise to complex tissues in vivo. We propose to develop novel computational approaches to analyze and synthesize the complex phenotypic data from live imaging and apply them to study how collective cell behaviors mediate cell movement in tissue morphogenesis and achieve robust cell positioning. We use C. elegans embryogenesis as our model, where we have developed techniques for high throughput imaging and automated cell tracking that allow us to perturb hundreds of genes and conduct detailed lineage analysis in thousands of embryos. We propose three aims. First, we will develop new algorithms for accurate cell tracking in dense tissues, including a new method based on multi-color labeling of nuclei. Accuracy in cell tracking is a major bottleneck in systematic analysis of individual cell behaviors, especially in dense tissues. This effort will provide novel tools with improved accuracy, which in turn allows more effective analysis of individual cell behaviors in large image datasets. Second, We will examine novel mechanisms that mediate cell movement in tissue morphogenesis and achieve robust cell positioning. These include a novel form of multicellular rosette where sequential edge contraction and resolution events mediate directional cell movement. We also propose a novel model of robust cell positioning where cells assess their neighborhoods and activate movement when a desired neighbor is missing. We will elucidate the underlying molecular and cellular mechanisms combining genetic perturbations, systematic single-cell analysis and a novel method for real-time tracking and optical manipulation of single cells. This study will broaden our understanding of developmental noise control at the cellular and tissue levels. Third, We will develop a novel agent-based modeling framework to integrate complex phenotypic data for multi-scale analysis of complex tissues. We will develop a software package for general use beyond C. elegans. We will then apply it to examine lineage differentiation and tissue morphogenesis in C. elegans embryogenesis based on the thousands of perturbed embryos collected in this and our previous studies. In particular, we will further examine robustness in cell positioning by integrating the model above with a PCP-like model of Wnt-based spindle control. This work will provide a powerful tool to examine complex tissues across molecular, cellular and tissue levels, and further insights on the robustness of tissue morphogenesis.
组织形态发生的系统多尺度分析 活体成像的最新进展为研究细胞行为以及细胞如何在体内存活提供了前所未有的机会。 细胞相互作用在体内产生复杂的组织。我们建议开发新的计算方法 分析和综合来自实时成像的复杂表型数据,并将其应用于研究 集体细胞行为介导组织形态发生中的细胞运动并实现稳健的细胞定位。 我们使用C。线虫胚胎发生作为我们的模型,在那里我们已经开发了高通量的技术 成像和自动化细胞跟踪,使我们能够干扰数百个基因, 分析了数千个胚胎。我们提出三个目标。首先,我们将开发新的算法, 致密组织中的细胞跟踪,包括一种基于细胞核多色标记的新方法。单元格中的准确度 跟踪是系统分析单个细胞行为,特别是在致密组织中的单个细胞行为的主要瓶颈。 这一努力将提供具有更高准确性的新工具,从而可以更有效地分析 单个细胞的行为在大型图像数据集。其次,我们将研究新的机制,介导细胞 组织形态发生中的运动,并实现稳健的细胞定位。其中包括一种新颖的 多细胞玫瑰花结,其中连续的边缘收缩和消退事件介导定向细胞 运动我们还提出了一个新的模型,强大的细胞定位细胞评估他们的邻居 并且当期望的邻居丢失时激活移动。我们将阐明潜在的分子和 细胞机制结合遗传扰动,系统的单细胞分析和新的方法, 单细胞的实时跟踪和光学操作。这项研究将扩大我们对 在细胞和组织水平上的发育噪音控制。第三,我们将开发一种新颖的基于Agent的 建模框架,以整合复杂的表型数据,用于复杂组织的多尺度分析。我们将 开发一个通用的C语言以外的软件包。优美的然后我们将应用它来检查血统 分化和组织形态建成。线虫胚胎发生的基础上数以千计的扰动 在这个和我们以前的研究中收集的胚胎。特别地,我们将进一步研究单元格中的鲁棒性。 通过将上述模型与基于Wnt的主轴控制的类似PCP的模型相结合来实现定位。这项工作将 提供了一个强大的工具来检查分子,细胞和组织水平的复杂组织,并进一步 对组织形态发生稳健性的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhirong Bao其他文献

Zhirong Bao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhirong Bao', 18)}}的其他基金

An integrative cellular blueprint of vertebrate tissue development
脊椎动物组织发育的综合细胞蓝图
  • 批准号:
    10001627
  • 财政年份:
    2018
  • 资助金额:
    $ 36.42万
  • 项目类别:
An integrative cellular blueprint of vertebrate tissue development
脊椎动物组织发育的综合细胞蓝图
  • 批准号:
    10474400
  • 财政年份:
    2018
  • 资助金额:
    $ 36.42万
  • 项目类别:
An integrative cellular blueprint of vertebrate tissue development
脊椎动物组织发育的综合细胞蓝图
  • 批准号:
    10241925
  • 财政年份:
    2018
  • 资助金额:
    $ 36.42万
  • 项目类别:
WormGUIDES: A Resource for Global Understanding in Dynamic Embryonic Systems
WormGUIDES:动态胚胎系统全局理解的资源
  • 批准号:
    9358881
  • 财政年份:
    2013
  • 资助金额:
    $ 36.42万
  • 项目类别:
An integrated system to monitor complex tissues at single-cell resolution
以单细胞分辨率监测复杂组织的集成系统
  • 批准号:
    9101424
  • 财政年份:
    2012
  • 资助金额:
    $ 36.42万
  • 项目类别:
An integrated system to monitor complex tissues at single-cell resolution
以单细胞分辨率监测复杂组织的集成系统
  • 批准号:
    8704126
  • 财政年份:
    2012
  • 资助金额:
    $ 36.42万
  • 项目类别:
An integrated system to monitor complex tissues at single-cell resolution
以单细胞分辨率监测复杂组织的集成系统
  • 批准号:
    8549292
  • 财政年份:
    2012
  • 资助金额:
    $ 36.42万
  • 项目类别:
An integrated system to monitor complex tissues at single-cell resolution
以单细胞分辨率监测复杂组织的集成系统
  • 批准号:
    9114130
  • 财政年份:
    2012
  • 资助金额:
    $ 36.42万
  • 项目类别:
An integrated system to monitor complex tissues at single-cell resolution
以单细胞分辨率监测复杂组织的集成系统
  • 批准号:
    8414001
  • 财政年份:
    2012
  • 资助金额:
    $ 36.42万
  • 项目类别:
The Ubiquitin-Proteasome System in Metazoan Embryogenesis
后生动物胚胎发生中的泛素-蛋白酶体系统
  • 批准号:
    8303404
  • 财政年份:
    2011
  • 资助金额:
    $ 36.42万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了