Predicting gene regulation across populations to understand mechanisms underlying complex traits
预测人群中的基因调控,以了解复杂性状背后的机制
基本信息
- 批准号:9304684
- 负责人:
- 金额:$ 42.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseArchitectureAtherosclerosisBiologicalCholesterolCohort StudiesComplexComputer softwareDNADNA SequenceDataData SetDatabasesDiseaseEuropeanFutureGene ExpressionGene Expression RegulationGene FrequencyGenesGeneticGenetic studyGenomeGenotypeGenotype-Tissue Expression ProjectHeightHeritabilityIndividualKnowledgeLeadMachine LearningMethodsModelingNamesOpen Reading FramesPathway interactionsPerformancePhenotypePlayPopulationPopulation GeneticsPopulation HeterogeneityQuantitative Trait LociRegulationRoleScanningT-LymphocyteTestingTissuesTranscriptTriglyceridesValidationVariantWeightbasedata accessdatabase of Genotypes and Phenotypesdrug developmentexperimental studyfallsfollow-upgenetic associationgenetic variantgenome wide association studygenome-widehealth disparityimprovedinterestlymphoblastoid cell linemalignant breast neoplasmmonocytenovelphenotypic dataprecision medicinepredictive modelingrepositoryresponsestatisticstraittranscriptome
项目摘要
Project Summary
A better understanding of the degree of transferability of genetic association results and implicated genes
across populations has implications for precision medicine and can only be accomplished by studying the
genetic architecture of complex traits in diverse populations. For many complex traits, gene regulation is likely
to play a crucial mechanistic role given the consistent enrichment of regulatory variants among trait-associated
variants. We have developed a gene-level association method called PrediXcan that harnesses the regulatory
knowledge generated by expression quantitative trait loci (eQTL) studies to directly test for genes associated
with complex traits. An advantage of this gene-based approach over other aggregate variant approaches is
that the results are inherently mechanistic and provide directionality, guiding follow-up experiments and future
drug development. The genetic contribution to population phenotypic differentiation is driven by differences in
causal allele frequencies, effect sizes, and genetic architectures. We propose to broaden the scope of
PrediXcan to include diverse populations by (1) optimizing predictors of gene expression within and across
diverse populations in multiple tissues and (2) performing gene-level association studies and quantifying
regulability on a range of phenotypes in non-European populations. We will use machine learning to optimize
predictive models of gene expression in datasets with both genome-wide genotype and gene expression data.
We will integrate prior results from larger European populations when appropriate. Based on preliminary
results, we expect a range of predictive power (assessed by cross-validation R2) will be observed across
genes dependent on the heritability of each gene expression trait and differences in allele frequencies and
effect sizes among populations. We will compare populations by 1) calculating the correlation between
heritability estimates and cross-validated prediction performance and by 2) by calculating trans-population
genetic effect size correlations (allele frequency independent) and trans-population genetic impact correlations
(allele frequency dependent). The optimal models will also inform the underlying genetic architectures (sparse
vs. polygenic) of gene expression traits and how they vary across populations. As we have done for European
populations, the predictive models and heritability estimates developed here will be added to an open access
database for use in PrediXcan and other studies. We hypothesize that PrediXcan will increase power to
identify genes and implicate mechanisms underlying complex traits and that we can quantify the overall effect
of phenotypic variation explained by transcriptome regulation within and across populations. We will compare
gene-level results across populations to determine if the same and/or unique genes and pathways are
implicated for a particular phenotype. We will estimate the proportion of phenotypic variance explained
collectively by all gene expression levels, which we name the regulability of a trait. All results, scripts, and
software will be available in publicly accessible databases and repositories.
项目摘要
更好地理解遗传关联结果和牵连基因的可转移程度
对精准医学有影响,只能通过研究
复杂性状的遗传结构。对于许多复杂的性状,基因调控很可能是
发挥关键的机制作用,因为在性状相关的基因组中,
变体。我们开发了一种称为PrediXcan的基因水平关联方法,
表达数量性状基因座(eQTL)研究产生的知识,以直接测试相关基因
有复杂的特征这种基于基因的方法相对于其他聚合变体方法的优点是
这些结果具有内在的机械性,并提供了方向性,指导后续实验和未来
药物开发遗传对群体表型分化的贡献是由以下因素的差异驱动的:
因果等位基因频率、效应量和遗传结构。我们建议扩大
PrediXcan包括不同的人群,通过(1)优化基因表达的预测因子
在多个组织中的不同群体和(2)进行基因水平关联研究和定量
在非欧洲人群中的一系列表型的可调控性。我们将使用机器学习来优化
具有全基因组基因型和基因表达数据的数据集中的基因表达预测模型。
我们将在适当的时候整合来自更大欧洲人群的先前结果。根据初步
结果,我们预计将观察到一系列的预测能力(通过交叉验证R2评估),
基因依赖于每个基因表达性状的遗传力和等位基因频率的差异,
人口的影响。我们将通过以下方式比较人口:1)计算
遗传力估计和交叉验证的预测性能和2)通过计算跨种群
遗传效应大小相关(等位基因频率无关)和跨群体遗传影响相关
(等位基因频率依赖性)。最佳模型还将告知潜在的遗传结构(稀疏
vs.多基因的)基因表达性状以及它们如何在人群中变化。正如我们为欧洲所做的那样,
在这里开发的预测模型和遗传力估计将被添加到开放获取中。
用于PrediXcan和其他研究的数据库。我们假设PrediXcan将增加功率,
确定基因和复杂性状的潜在机制,我们可以量化整体效果
通过群体内和群体间的转录组调节来解释表型变异。我们将比较
基因水平的结果,以确定是否相同和/或独特的基因和途径,
与特定的表型有关。我们将估计表型方差解释的比例
所有的基因表达水平,我们称之为性状的可调控性。所有结果、脚本和
软件将在可供公众查阅的数据库和储存库中提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Elizabeth Wheeler其他文献
Heather Elizabeth Wheeler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather Elizabeth Wheeler', 18)}}的其他基金
Predicting gene regulation across populations to understand mechanisms underlying complex traits
预测人群中的基因调控,以了解复杂性状背后的机制
- 批准号:
10652921 - 财政年份:2017
- 资助金额:
$ 42.9万 - 项目类别:
Pharmacogenomics of the chemotherapeutic agent paclitaxel
化疗药物紫杉醇的药物基因组学
- 批准号:
8733437 - 财政年份:2012
- 资助金额:
$ 42.9万 - 项目类别:
Pharmacogenomics of the chemotherapeutic agent paclitaxel
化疗药物紫杉醇的药物基因组学
- 批准号:
8397266 - 财政年份:2012
- 资助金额:
$ 42.9万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 42.9万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 42.9万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 42.9万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 42.9万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 42.9万 - 项目类别: