Predicting gene regulation across populations to understand mechanisms underlying complex traits
预测人群中的基因调控,以了解复杂性状背后的机制
基本信息
- 批准号:10652921
- 负责人:
- 金额:$ 43.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AfricanAfrican AmericanAllelesAuthorshipBiologicalCatalogsChronic DiseaseCollaborationsComplexDNADataData SourcesDevelopmentDiseaseDisease OutcomeDisease susceptibilityEast AsianEquilibriumEquityEuropeanEuropean ancestryFilipinoGene ExpressionGene Expression RegulationGene FrequencyGene ProteinsGenesGeneticGenetic studyGenotypeGoalsHeterogeneityHispanicHispanic PopulationsHistorical DemographyHumanHuman GeneticsJapaneseKnowledgeLinkage DisequilibriumMachine LearningMapsMendelian randomizationMethodsModelingMolecularMulti-Ethnic Study of AtherosclerosisMultiomic DataPathway interactionsPhenotypePopulationPopulation HeterogeneityPositioning AttributeProteinsProteomeProteomicsPublicationsPublishingQuantitative Trait LociRheumatoid ArthritisRiskRisk AssessmentSample SizeSleepStructureTestingTrainingTrans-Omics for Precision MedicineTranscriptUlcerative ColitisVariantWorkbiobankcausal variantepidemiological modelgenetic architecturegenetic predictorsgenetic variantgenome sequencinggenome wide association studygenome-widegut microbiomegut microbiotaimprovedinterestmicrobiomemicrobiome researchmodel buildingnovelpolygenic risk scoreportabilityprecision medicinepredictive modelingrisk predictionstatisticstraittranscriptometranscriptome sequencingundergraduate studentwhole genome
项目摘要
Project Summary
Most chronic diseases are polygenic with hundreds to thousands of causal variants, and we are starting to predict
disease susceptibility with risk scores derived from genome-wide association studies. However, 77% of training
data for these risk scores come from European ancestries populations and thus do not include genetic variants
uniquely or more predominantly found in non-European populations, which limits both discovery and precision
medicine potential. Methods that better identify causal variants and implicated biological mechanisms across
populations are essential for equitable precision medicine implementation and can only be accomplished by
studying the genetic architectures of complex traits in diverse populations. Since this project began, we have
characterized the genetic architecture of the transcriptome and proteome within and across diverse populations.
We identified a subset of transcripts and proteins that are well-predicted in one population, but poorly predicted
in another and showed these differences are due, in part, to allele frequency and linkage disequilibrium
differences. When testing prediction accuracy, we have shown that we need to consider both similarity in training
and test population ancestries and total training sample size to optimally predict gene expression or protein
abundance. In this proposal, we seek to drive mechanistic understanding of complex traits in diverse populations
by (1) improving omics-trait prediction models for maximum utility within and between diverse populations and
(2) investigating causal relationships between omics traits and complex traits and disease in diverse populations.
We will integrate multi-omics data from African, African American, East Asian, European, and Hispanic
populations in this project, including genome-wide genotype, transcriptome, proteome, and microbiome data.
Since allele frequencies and linkage disequilibrium structures differ between populations due to different
demographic histories, genetic prediction models trained in one population do not perform as well in another and
thus are currently of limited utility for risk prediction and mechanistic interpretation. We will use fine-mapping,
machine learning, and multivariate adaptive shrinkage to improve genotypic prediction of gene expression and
protein levels across populations. Predicting the transcriptome and proteome from genotype data allows
inference of whether high or low transcript or protein levels are associated with traits of interest, but false
positives often result from linkage disequilibrium. We will integrate Mendelian randomization and colocalization
sensitivity analyses into our PrediXcan method to test for causal relationships of transcripts, proteins, gut
microbiota, or other exposures on disease outcomes across diverse populations. Together, our proposed aims
have the potential to identify likely causal genes and molecular pathways underlying complex diseases. Our aims
work toward development of effective risk assessment and potential treatment targets in diverse populations.
Our team is well positioned to perform novel PrediXcan-based analyses of omics traits in diverse populations
and promises to maximize impact by making our scripts, models, and results publicly available.
项目摘要
大多数慢性病都是多基因的,有数百到数千种致病变异,我们开始预测,
疾病易感性与风险评分来自全基因组关联研究。77%的培训
这些风险评分的数据来自欧洲血统人群,因此不包括遗传变异
在非欧洲人群中唯一或更主要地发现,这限制了发现和精确度
医学潜力更好地识别因果变异和涉及的生物学机制的方法
人口对于公平的精准医疗实施至关重要,只能通过以下方式实现
研究不同种群中复杂性状的遗传结构。自从这个项目开始以来,我们
特征的转录组和蛋白质组内和跨不同人群的遗传结构。
我们确定了一个转录本和蛋白质的子集,这些转录本和蛋白质在一个群体中预测良好,但预测不佳
在另一项研究中,发现这些差异部分是由于等位基因频率和连锁不平衡造成的。
差异当测试预测准确性时,我们已经表明,我们需要在训练中考虑两者的相似性。
并测试群体祖先和总训练样本大小,以最佳地预测基因表达或蛋白质
丰饶。在这个提议中,我们试图推动对不同人群中复杂性状的机械理解
通过(1)改进组学-性状预测模型,以在不同群体内和群体之间实现最大效用,
(2)调查不同人群中组学特征和复杂特征与疾病之间的因果关系。
我们将整合来自非洲、非裔美国人、东亚、欧洲和西班牙裔的多组学数据
本项目中的人群,包括全基因组基因型,转录组,蛋白质组和微生物组数据。
由于等位基因频率和连锁不平衡结构在群体之间由于不同的遗传因素而不同,
人口统计学历史,在一个群体中训练的遗传预测模型在另一个群体中表现不佳,
因此目前对于风险预测和机械解释的实用性有限。我们将使用精细映射,
机器学习和多变量自适应收缩,以改善基因表达的基因型预测,
不同人群的蛋白质水平从基因型数据预测转录组和蛋白质组,
高或低转录物或蛋白质水平与感兴趣的性状相关的推断,但错误
阳性通常由连锁不平衡引起。我们将整合孟德尔随机化和共定位
对我们的PrediXcan方法进行敏感性分析,以测试转录本、蛋白质、肠道
微生物群或其他暴露对不同人群疾病结果的影响。我们共同提出的目标
有潜力确定可能的致病基因和复杂疾病的分子途径。我们的目标
致力于在不同人群中开发有效的风险评估和潜在的治疗目标。
我们的团队有能力在不同人群中进行基于PrediXcan的组学特征分析
并承诺通过公开我们的脚本、模型和结果来最大化影响。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Population-Matched Transcriptome Prediction Increases TWAS Discovery and Replication Rate.
- DOI:10.1016/j.isci.2020.101850
- 发表时间:2020-12-18
- 期刊:
- 影响因子:5.8
- 作者:Geoffroy E;Gregga I;Wheeler HE
- 通讯作者:Wheeler HE
Gene-based association study for lipid traits in diverse cohorts implicates BACE1 and SIDT2 regulation in triglyceride levels.
- DOI:10.7717/peerj.4314
- 发表时间:2018
- 期刊:
- 影响因子:2.7
- 作者:Andaleon A;Mogil LS;Wheeler HE
- 通讯作者:Wheeler HE
Genetic and environmental variation impact transferability of polygenic risk scores.
- DOI:10.1016/j.xcrm.2022.100687
- 发表时间:2022-07-19
- 期刊:
- 影响因子:14.3
- 作者:Araujo, Daniel S.;Wheeler, Heather E.
- 通讯作者:Wheeler, Heather E.
Comparing local ancestry inference models in populations of two- and three-way admixture.
- DOI:10.7717/peerj.10090
- 发表时间:2020
- 期刊:
- 影响因子:2.7
- 作者:Schubert R;Andaleon A;Wheeler HE
- 通讯作者:Wheeler HE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Elizabeth Wheeler其他文献
Heather Elizabeth Wheeler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather Elizabeth Wheeler', 18)}}的其他基金
Predicting gene regulation across populations to understand mechanisms underlying complex traits
预测人群中的基因调控,以了解复杂性状背后的机制
- 批准号:
9304684 - 财政年份:2017
- 资助金额:
$ 43.65万 - 项目类别:
Pharmacogenomics of the chemotherapeutic agent paclitaxel
化疗药物紫杉醇的药物基因组学
- 批准号:
8733437 - 财政年份:2012
- 资助金额:
$ 43.65万 - 项目类别:
Pharmacogenomics of the chemotherapeutic agent paclitaxel
化疗药物紫杉醇的药物基因组学
- 批准号:
8397266 - 财政年份:2012
- 资助金额:
$ 43.65万 - 项目类别:
相似海外基金
Broadening Participation Research: Understanding faculty attitudes, competency, and perceptions of providing career advising to African American STEM students at HBCUs
扩大参与研究:了解教师对 HBCU 的非裔美国 STEM 学生提供职业建议的态度、能力和看法
- 批准号:
2306671 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Continuing Grant
Cognitive Behavioral Faith-based Depression Intervention For African American Adults (CB-FAITH): An Effectiveness And Implementation Trial
非裔美国成年人基于认知行为信仰的抑郁干预 (CB-FAITH):有效性和实施试验
- 批准号:
10714464 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
DELINEATING THE ROLE OF THE HOMOCYSTEINE-FOLATE-THYMIDYLATE SYNTHASE AXIS AND URACIL ACCUMULATION IN AFRICAN AMERICAN PROSTATE TUMORS
描述同型半胱氨酸-叶酸-胸苷酸合成酶轴和尿嘧啶积累在非裔美国人前列腺肿瘤中的作用
- 批准号:
10723833 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
- 批准号:
10811498 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Exploring PTSD Symptoms, Barriers and Facilitators to Mindfulness-based Stress Reduction for Justice-Involved Black/African American Female Adolescents and Parents/Caregivers
探索创伤后应激障碍 (PTSD) 症状、障碍和促进因素,为涉及正义的黑人/非裔美国女性青少年和父母/照顾者进行基于正念的减压
- 批准号:
10593806 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
BCSER - PVEST: A Dynamic Framework for Investigating STEM Interest, Attitude and Identity Among African American Middle School Students
BCSER - PVEST:调查非裔美国中学生 STEM 兴趣、态度和身份的动态框架
- 批准号:
2327055 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Standard Grant
Making the Connection: Understanding the dynamic social connections impacting type 2 diabetes management among Black/African American men
建立联系:了解影响黑人/非裔美国男性 2 型糖尿病管理的动态社会联系
- 批准号:
10782674 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Building a Community-Based Mental Health Literacy Intervention for African American Young Adults
为非裔美国年轻人建立基于社区的心理健康素养干预措施
- 批准号:
10738855 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
African American Literature in "post" Post-Racial America
“后”后种族美国中的非裔美国文学
- 批准号:
23K00376 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Impact of a Race-Based Stress Reduction Intervention on Well-Being, Inflammation, and DNA methylation in Older African American Women at Risk for Cardiometabolic Disease
基于种族的减压干预措施对有心血管代谢疾病风险的老年非洲裔美国女性的健康、炎症和 DNA 甲基化的影响
- 批准号:
10633624 - 财政年份:2023
- 资助金额:
$ 43.65万 - 项目类别: