Molecular Mechanism and Biological Function of 3'-5' Polymerases
3-5聚合酶的分子机制和生物学功能
基本信息
- 批准号:9229039
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntifungal AgentsAntiparasitic AgentsArchaeaBacteriaBase PairingBiochemicalBiochemical GeneticsBiologicalBiological AssayBiological ProcessBiologyBypassCatalysisCellsChemicalsCoupledDNA biosynthesisDNA-Directed DNA PolymeraseDNA-Directed RNA PolymeraseDefectDevelopmentDiabetic NephropathyDictyostelium discoideumDiscriminationEnzymesEukaryotaExhibitsFamilyFamily memberGeneticGoalsGrowthHealthHistidine-Specific tRNAHumanHuman PathologyInvestigationKineticsLeadLengthLifeLinkMetabolismMicrobeMitochondriaMolecularNatureNucleic AcidsNucleotidesOrganismOutcomePathway interactionsPhenotypePhysarum polycephalumPlasmodium falciparumPolymerasePositioning AttributeProcessPropertyProtein FamilyProteinsRNARNA EditingRNA ProcessingRNA chemical synthesisReactionRibosomal RNARoleSaccharomyces cerevisiaeSpecificityStructureSubstrate SpecificitySystemTechniquesTestingTransfer RNATrichomonas vaginalisUntranslated RNAVariantYeastsbiological systemsgenetic approachguanylyltransferaseinsightknock-downmembernoveloverexpressionpathogenpreferencerepairedtranscriptome sequencingyeast genetics
项目摘要
The long term goals of this project are to develop a complete understanding of the biological roles and
molecular mechanisms of the only known family of 3'-5' polymerases- enzymes that act in the opposite
direction to all known DNA and RNA polymerases- in biology. The 3'-5' polymerase enzyme family contains
tRNAHis guanylyltransferase (Thg1) proteins and Thg1-like proteins (TLPs). Thg1 proteins utilize the 3'-5'
addition reaction to add a single required nucleotide to tRNAHis, which is an essential activity in many
eukaryotes, including humans. On the other hand, although they share a related structure and basic catalytic
mechanism, TLPs are biochemical and biologically distinct from Thg1, and the biological reactions that these
enzymes catalyze are much less well-understood. At least one function of TLPs is to utilize Watson-Crick base
pair dependent 3'-5' polymerase activity to add multiple nucleotides to repair the 5'-ends of tRNA in the
mitochondria of many eukaryotic microbes. However, additional functions for these enzymes, including acting
to repair or process other types of RNAs, are likely. Since RNA repair reactions are biologically important, and
defects in these pathways can lead to negative effects on health, it is critical to fully understand the
contributions of these unusual proteins to maintaining a healthy RNA pool. Interestingly, structures of several
3'-5' polymerases that are now available indicate that these enzymes share a distinct structural similarity and
several aspects of their catalytic mechanism with canonical 5'-3' polymerases. Therefore, understanding the
molecular basis for catalysis by 3'-5' polymerases is also important to understanding the distinctions between
these two classes of nucleic acid synthesizing enzymes. The specific aims of this proposal are to determine
biological roles of 3'-5' polymerases in the slime mold, Dictystelium discoideum, as well as in some Archaea
and S. cerevisiae. The molecular basis for substrate recognition, which is a key biological property that
distinguishes Thg1 and TLPs, will also be investigated. This application proposes the use of kinetic, genetic,
biochemical and structural techniques to investigate the molecular mechanisms and biological functions of both
non-templated and templated 3'-5' addition reactions catalyzed by diverse 3'-5' polymerase family members.
These results will provide insight into catalysis of a novel and apparently widespread, but largely unexplored,
reaction in biology, and will enable further investigation into alternative functions for 3'-5' nucleotide addition in
biological systems.
该项目的长期目标是全面了解生物作用和
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Elizabeth Jackman其他文献
Jane Elizabeth Jackman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane Elizabeth Jackman', 18)}}的其他基金
Cellular, molecular, and biochemical sciences training grant
细胞、分子和生化科学培训补助金
- 批准号:
10206391 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
Cellular, molecular, and biochemical sciences training grant
细胞、分子和生化科学培训补助金
- 批准号:
10413933 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
Cellular, molecular, and biochemical sciences training grant
细胞、分子和生化科学培训补助金
- 批准号:
10626042 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
2015 RNA Editing Gordon Research Conference & Gordon Research Seminar
2015年RNA编辑戈登研究会议
- 批准号:
8837727 - 财政年份:2015
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
7986833 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8699201 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8305592 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8516527 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8126395 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
相似海外基金
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
- 批准号:
MR/Y002164/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
- 批准号:
2898887 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
- 批准号:
22H02216 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
- 批准号:
22K05337 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
- 批准号:
2753345 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
- 批准号:
20H03533 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
- 批准号:
2456629 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
Studentship
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
- 批准号:
19K05738 - 财政年份:2019
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
- 批准号:
2107517 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Studentship














{{item.name}}会员




