Molecular Mechanism and Biological Function of 3'-5' Polymerases
3-5聚合酶的分子机制和生物学功能
基本信息
- 批准号:9229039
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAntifungal AgentsAntiparasitic AgentsArchaeaBacteriaBase PairingBiochemicalBiochemical GeneticsBiologicalBiological AssayBiological ProcessBiologyBypassCatalysisCellsChemicalsCoupledDNA biosynthesisDNA-Directed DNA PolymeraseDNA-Directed RNA PolymeraseDefectDevelopmentDiabetic NephropathyDictyostelium discoideumDiscriminationEnzymesEukaryotaExhibitsFamilyFamily memberGeneticGoalsGrowthHealthHistidine-Specific tRNAHumanHuman PathologyInvestigationKineticsLeadLengthLifeLinkMetabolismMicrobeMitochondriaMolecularNatureNucleic AcidsNucleotidesOrganismOutcomePathway interactionsPhenotypePhysarum polycephalumPlasmodium falciparumPolymerasePositioning AttributeProcessPropertyProtein FamilyProteinsRNARNA EditingRNA ProcessingRNA chemical synthesisReactionRibosomal RNARoleSaccharomyces cerevisiaeSpecificityStructureSubstrate SpecificitySystemTechniquesTestingTransfer RNATrichomonas vaginalisUntranslated RNAVariantYeastsbiological systemsgenetic approachguanylyltransferaseinsightknock-downmembernoveloverexpressionpathogenpreferencerepairedtranscriptome sequencingyeast genetics
项目摘要
The long term goals of this project are to develop a complete understanding of the biological roles and
molecular mechanisms of the only known family of 3'-5' polymerases- enzymes that act in the opposite
direction to all known DNA and RNA polymerases- in biology. The 3'-5' polymerase enzyme family contains
tRNAHis guanylyltransferase (Thg1) proteins and Thg1-like proteins (TLPs). Thg1 proteins utilize the 3'-5'
addition reaction to add a single required nucleotide to tRNAHis, which is an essential activity in many
eukaryotes, including humans. On the other hand, although they share a related structure and basic catalytic
mechanism, TLPs are biochemical and biologically distinct from Thg1, and the biological reactions that these
enzymes catalyze are much less well-understood. At least one function of TLPs is to utilize Watson-Crick base
pair dependent 3'-5' polymerase activity to add multiple nucleotides to repair the 5'-ends of tRNA in the
mitochondria of many eukaryotic microbes. However, additional functions for these enzymes, including acting
to repair or process other types of RNAs, are likely. Since RNA repair reactions are biologically important, and
defects in these pathways can lead to negative effects on health, it is critical to fully understand the
contributions of these unusual proteins to maintaining a healthy RNA pool. Interestingly, structures of several
3'-5' polymerases that are now available indicate that these enzymes share a distinct structural similarity and
several aspects of their catalytic mechanism with canonical 5'-3' polymerases. Therefore, understanding the
molecular basis for catalysis by 3'-5' polymerases is also important to understanding the distinctions between
these two classes of nucleic acid synthesizing enzymes. The specific aims of this proposal are to determine
biological roles of 3'-5' polymerases in the slime mold, Dictystelium discoideum, as well as in some Archaea
and S. cerevisiae. The molecular basis for substrate recognition, which is a key biological property that
distinguishes Thg1 and TLPs, will also be investigated. This application proposes the use of kinetic, genetic,
biochemical and structural techniques to investigate the molecular mechanisms and biological functions of both
non-templated and templated 3'-5' addition reactions catalyzed by diverse 3'-5' polymerase family members.
These results will provide insight into catalysis of a novel and apparently widespread, but largely unexplored,
reaction in biology, and will enable further investigation into alternative functions for 3'-5' nucleotide addition in
biological systems.
该项目的长期目标是发展对生物学作用的全面理解,
唯一已知的3 '-5'聚合酶家族的分子机制-相反作用的酶
生物学中所有已知的DNA和RNA聚合酶的方向。3 '-5'聚合酶家族包含
tRNAHis鸟苷酰转移酶(Thg 1)蛋白和Thg 1样蛋白(TLPs)。Thg 1蛋白利用3 '-5'端的
在一些实施方案中,该方法包括将单个所需核苷酸添加到tRNAHis的加成反应,这在许多实施方案中是必需的活性。
真核生物,包括人类。另一方面,尽管它们具有相关的结构和基本的催化活性,
由于TLPs的作用机制,TLPs在生物化学和生物学上与Thg 1不同,这些TLPs的生物学反应与Thg 1的生物学反应不同。
催化酶的作用还不太清楚。TLP的至少一个功能是利用沃森-克里克碱
配对依赖性3 '-5'聚合酶活性,以添加多个核苷酸来修复细胞中tRNA的5 '末端。
许多真核微生物的线粒体。然而,这些酶的其他功能,包括作用于
来修复或加工其他类型的RNA。由于RNA修复反应在生物学上很重要,
这些途径中的缺陷可能导致对健康的负面影响,因此充分了解
这些不寻常的蛋白质对维持健康的RNA库的贡献。有趣的是,几种结构
现在可用的3 '-5'聚合酶表明这些酶具有明显的结构相似性,
它们与典型的5 ′-3 ′聚合酶的催化机制的几个方面。因此了解
3 '-5'聚合酶催化作用的分子基础对于理解
这两类核酸合成酶。本提案的具体目的是确定
3 '-5'聚合酶在黏菌、盘状网柄菌和一些放线菌中的生物学作用
和S.啤酒。底物识别的分子基础,这是一个关键的生物学特性,
区分Thg 1和TLPs,也将进行研究。本申请提出使用动力学的、遗传的、
生物化学和结构技术来研究两者的分子机制和生物学功能
由不同的3 '-5'聚合酶家族成员催化的非模板化和模板化3 '-5'加成反应。
这些结果将提供对一种新的、显然广泛存在的、但在很大程度上未被探索的,
反应,并将能够进一步研究3 '-5'核苷酸添加在生物学中的替代功能。
生物系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Elizabeth Jackman其他文献
Jane Elizabeth Jackman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane Elizabeth Jackman', 18)}}的其他基金
Cellular, molecular, and biochemical sciences training grant
细胞、分子和生化科学培训补助金
- 批准号:
10206391 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
Cellular, molecular, and biochemical sciences training grant
细胞、分子和生化科学培训补助金
- 批准号:
10413933 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
Cellular, molecular, and biochemical sciences training grant
细胞、分子和生化科学培训补助金
- 批准号:
10626042 - 财政年份:2021
- 资助金额:
$ 34.34万 - 项目类别:
2015 RNA Editing Gordon Research Conference & Gordon Research Seminar
2015年RNA编辑戈登研究会议
- 批准号:
8837727 - 财政年份:2015
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
7986833 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8699201 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8305592 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8516527 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
Molecular Mechanism and Biological Function of 3'-5' Nucleotide Addition
3-5核苷酸添加的分子机制和生物学功能
- 批准号:
8126395 - 财政年份:2010
- 资助金额:
$ 34.34万 - 项目类别:
相似海外基金
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
- 批准号:
MR/Y002164/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
- 批准号:
2898887 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
- 批准号:
22H02216 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
- 批准号:
22K05337 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
- 批准号:
2753345 - 财政年份:2022
- 资助金额:
$ 34.34万 - 项目类别:
Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
- 批准号:
20H03533 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
- 批准号:
2456629 - 财政年份:2020
- 资助金额:
$ 34.34万 - 项目类别:
Studentship
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
- 批准号:
19K05738 - 财政年份:2019
- 资助金额:
$ 34.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
- 批准号:
2107517 - 财政年份:2018
- 资助金额:
$ 34.34万 - 项目类别:
Studentship














{{item.name}}会员




