Maximum efficiency sequencing using nuclease-based mutation enrichment and digital barcodes

使用基于核酸酶的突变富集和数字条形码进行最高效率测序

基本信息

  • 批准号:
    9355330
  • 负责人:
  • 金额:
    $ 45.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Low-level tumor somatic DNA mutations can have profound implications for development of metastasis, prognosis, choice of treatment, follow-up or early cancer detection strategies. Unless they are effectively detected, these low-level mutations can misinform patient management decisions or become missed opportunities for personalized medicine. Next generation sequencing (NGS) technologies can effectively reveal prevalent somatic mutations, yet they 'lose steam' when it comes to detecting low-level DNA mutations in tumors with clonal heterogeneity, or in bodily fluids, and their integration with clinical practice is problematic. For mutations at allelic ratio of ~2-5% or less, NGS generates excessive false positives (‘noise’) independent of sequencing depth and hinders personalized clinical decisions based on mutational profiling. Recent adaptations of NGS to detect rare mutations using random barcoding strategies may overcome the noise but invariably diminish its high throughput capability and increase costs. We recently developed NaMe-PrO, a simple and powerful technology to eliminate wild-type sequences from large numbers of targets in genomic DNA. NaME-PrO utilizes a nuclease guided by probes to thousands of DNA targets, to render WT sequences non-amplifiable thereby allowing mutation–containing sequences to amplify and be sequenced as if they were clonal mutations. This R33 proposes to develop quantitative NaME- PrO (qNaME-PrO), which combines NaME-PrO with a novel use of molecular barcoding, to provide strict enumeration of original mutation abundance for all mutant sequences following their enrichment. Thereby converting rare mutations to high abundance mutations, boosting confidence in their detection and circumventing the need for repeated and wasteful sequence reads during NGS. The method creates the potential for massively parallel mutation enrichment prior to sequencing and engenders a new paradigm whereby rare mutations do not require deep sequencing for their detection. The R33 (Aims 1&2) will optimize and develop qNaME-PrO panels to cover all known mutation hotspots and full length exons in tumor suppressor genes and oncogenes relevant to lung cancer. In Aim 3 the method will be field-tested in a compilation of longitudinally collected plasma samples from patients undergoing radio-chemo-therapy. Being able to extract ‘the mutated portion of a large genomic target’ from a mixed clinical sample prior to downstream analysis will translate to a major boost in the speed, accuracy and cost of sequencing low- prevalence mutations in heterogeneous tumors and bodily fluids and will accelerate clinical application of NGS for cancer diagnosis, prognosis and management. Therefore relevance to Public Health is high.
项目摘要 低水平的肿瘤体细胞DNA突变可能对转移的发展具有深远的影响, 预后、治疗选择、随访或癌症早期检测策略。除非他们能有效地 检测到这些低水平的突变可能会误导患者的管理决策或被遗漏 个性化医疗的机会。下一代测序(NGS)技术可以有效地揭示 普遍存在的体细胞突变,然而当涉及到检测低水平的DNA突变时,它们却失去了动力 克隆异质性的肿瘤,或体液中的肿瘤,以及它们与临床实践的结合是有问题的。 对于等位基因比例在~2-5%或更低的突变,NGS会产生过多的不依赖于噪声的假阳性 影响测序深度,阻碍基于突变图谱的个性化临床决策。近期 改编NGS以使用随机条码策略检测罕见的突变可能会克服噪声,但 不可避免地会削弱其高吞吐能力并增加成本。 我们最近开发了NAME-PRO,这是一种简单而强大的技术来消除野生型序列 来自基因组DNA中的大量靶点。NAME-PRO利用一种由探针引导的核酸酶 使WT序列不可扩增,从而允许包含突变的序列 进行扩增和测序,就像它们是克隆突变一样。本R33建议开发量化名称- PRO(qNaME-PRO),它结合了NAME-PRO和分子条形码的新用途,以提供严格的 所有突变序列在浓缩后的原始突变丰度的计数。从而 将罕见突变转化为高丰度突变,增强了对它们的检测和 避免了在NGS期间重复和浪费序列读取的需要。该方法创建 在测序之前有可能进行大规模平行突变浓缩,并产生新的范例 因此,罕见的突变不需要为它们的检测进行深度测序。R33(目标1和2)将进行优化 并开发qNaME-PRO面板,覆盖所有已知的突变热点和肿瘤的全长外显子 与肺癌相关的抑癌基因和癌基因。在目标3中,该方法将在一个 从接受放化疗的患者纵向收集的血浆样本的汇编。 能够从混合的临床样本中提取“大基因组靶标的突变部分” 到下游分析将转化为大大提高测序的速度、准确性和成本。 异质肿瘤和体液中的流行突变将加速NGS的临床应用 用于癌症诊断、预后和管理。因此,与公共卫生的相关性很高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

G. Mike Makrigiorgos其他文献

G. Mike Makrigiorgos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('G. Mike Makrigiorgos', 18)}}的其他基金

Comprehensive minimal residual disease tracking in cancer
癌症的全面微小残留病追踪
  • 批准号:
    9920128
  • 财政年份:
    2018
  • 资助金额:
    $ 45.67万
  • 项目类别:
Prognostic potential of low-level mutations in meylodysplastic syndrome
骨髓增生异常综合征低水平突变的预后潜力
  • 批准号:
    8787719
  • 财政年份:
    2014
  • 资助金额:
    $ 45.67万
  • 项目类别:
Mutation Enriched Targeted Re-Sequencing
突变富集靶向重测序
  • 批准号:
    9195704
  • 财政年份:
    2013
  • 资助金额:
    $ 45.67万
  • 项目类别:
Temperature-Tolerant COLD-PCR enables mutation-enriched targeted re-sequencing
耐温 COLD-PCR 可实现突变富集的靶向重测序
  • 批准号:
    8591934
  • 财政年份:
    2013
  • 资助金额:
    $ 45.67万
  • 项目类别:
High-throughput technology that enables sequencing depth for colorectal CA
高通量技术可实现结直肠 CA 深度测序
  • 批准号:
    8333344
  • 财政年份:
    2011
  • 资助金额:
    $ 45.67万
  • 项目类别:
High-throughput technology that enables sequencing depth for colorectal CA
高通量技术可实现结直肠 CA 深度测序
  • 批准号:
    8153972
  • 财政年份:
    2011
  • 资助金额:
    $ 45.67万
  • 项目类别:
Technology for sensitive and reliable mutational profiling in pancreatic cancer
胰腺癌敏感且可靠的突变分析技术
  • 批准号:
    7795122
  • 财政年份:
    2009
  • 资助金额:
    $ 45.67万
  • 项目类别:
Technology for sensitive and reliable mutational profiling in pancreatic cancer
胰腺癌敏感且可靠的突变分析技术
  • 批准号:
    7626951
  • 财政年份:
    2009
  • 资助金额:
    $ 45.67万
  • 项目类别:
Technology for sensitive and reliable mutational profiling in pancreatic cancer
胰腺癌敏感且可靠的突变分析技术
  • 批准号:
    8022903
  • 财政年份:
    2009
  • 资助金额:
    $ 45.67万
  • 项目类别:
CIRCULATING DNA AMPLIFICATION & COLON CA DETECTION
循环 DNA 扩增
  • 批准号:
    7090955
  • 财政年份:
    2006
  • 资助金额:
    $ 45.67万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 45.67万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 45.67万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 45.67万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 45.67万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 45.67万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 45.67万
  • 项目类别:
    Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 45.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 45.67万
  • 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 45.67万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 45.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了