Lymphocyte Metabolism in Autoimmune Insulitis

自身免疫性胰岛炎中的淋巴细胞代谢

基本信息

项目摘要

Project Summary Type 1 diabetes (T1D) results in the immune-mediated destruction of insulin-producing beta cells in the pancreas. As such, immune intervention to prevent, delay, or reverse T1D is an appealing therapeutic approach. Development of an antigen-specific intervention that targets the diabetogenic immune response without compromising systemic immunity is complicated by an expanding list of antigenic targets in T1D. Recently, novel, post-translationally modified hybrid fusion peptides generated at the site of autoimmune attack in the islet have also been identified as potent autoantigens. Thus, development of effective antigen-based therapy requires not only antigen identification, but also an understanding the unique antigen processing environment facilitated by the islet itself. This proposal seeks to identify the effects of lymphocyte metabolism on T-B interactions in T1D. Hypoxia is a potent regulator of B cell proliferation and expansion at the site of T-B interactions in the germinal center of primary lymphoid organs. Germinal centers also form in the islets during autoimmune attack; however, the effect of hypoxia on islet germinal centers is not known. These germinal centers are formed within areas of lymphocytic infiltrate, termed insulitis. Interestingly, not all insulitis lesions progress to beta cell death. Given the highly vascularized nature of the islet needed to accommodate the metabolic demand associated with insulin secretion, it is possible that the islet’s distinct metabolic microenvironment influences T and B cell interactions at the site of autoimmune attack in the pancreas. The proposed research will test the hypothesis that the sites of T-B cell interactions in the islet are metabolically distinct from those of primary lymphoid organs and that the metabolic profiles of infiltrating lymphocytes are differentially regulated to develop autoaggressive or regulatory phenotypes that either drive or protect against the development of T1D. In aim 1, we will assess how the metabolic environment in the islet shapes the immune effector response as diabetes progresses. A unique hypoxia probe will be used to assess changes in islet oxygen tension and a combination of metabolic phenotyping and real-time bioenergetic analysis will be used to identify changes in cellular energy sources throughout the disease process. In aim 2, transgenic NOD mouse models will be used to delineate the metabolic parameters that distinguish innocuous from destructive insulitis. These studies will identify characteristic metabolic features of autoimmunity and tolerance in T1D -- differences that may be harnessed for future therapeutic interventions.
项目摘要 1型糖尿病(T1 D)导致免疫介导的胰岛素产生β细胞的破坏, 胰腺因此,预防、延迟或逆转T1 D的免疫干预是一种有吸引力的治疗方法。 开发靶向致糖尿病免疫应答的抗原特异性干预, 由于T1 D中抗原性靶点的扩展列表,损害全身免疫性变得复杂。最近, 本发明提供了一种新的、在免疫后修饰的杂合融合肽, 胰岛也被鉴定为有效自身抗原。因此,开发有效的基于抗原的治疗方法, 不仅需要抗原鉴定,还需要了解独特的抗原处理环境, 是由小岛本身促成的该提案旨在确定淋巴细胞代谢对T-B的影响, 在T1 D中的相互作用 缺氧是一种有效的调节B细胞增殖和扩增的位点上的T-B相互作用, 初级淋巴器官的生殖中心。在自身免疫过程中, 然而,缺氧对胰岛生长中心的影响尚不清楚。这些老人中心是 在淋巴细胞浸润区域内形成,称为胰岛炎。有趣的是,并非所有的胰岛炎病变进展到 β细胞死亡鉴于胰岛需要高度血管化的性质来适应代谢需求 与胰岛素分泌相关,胰岛独特的代谢微环境可能影响T 和B细胞在胰腺自身免疫攻击部位的相互作用。 这项拟议中的研究将检验胰岛中T-B细胞相互作用的位点是 与初级淋巴器官的代谢不同,浸润性淋巴细胞的代谢特征 淋巴细胞被差异调节以发展自身攻击性或调节性表型, 预防T1 D的发展。在目标1中,我们将评估胰岛中的代谢环境如何 随着糖尿病的发展,影响免疫效应反应。将使用一种独特的缺氧探针来评估 胰岛氧分压的变化以及代谢表型和实时生物能量的组合 分析将用于确定整个疾病过程中细胞能量来源的变化。在目标2中, 将使用转基因NOD小鼠模型来描绘区分无害的代谢参数。 破坏性胰岛炎这些研究将确定自身免疫的特征性代谢特征, T1 D的耐受性--可能用于未来治疗干预的差异。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMIE LYNN FELTON其他文献

JAMIE LYNN FELTON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
  • 批准号:
    BB/Y006380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
  • 批准号:
    24K17112
  • 财政年份:
    2024
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
  • 批准号:
    23K04668
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
  • 批准号:
    23K06918
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
  • 批准号:
    23K05758
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
  • 批准号:
    2888395
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Studentship
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
    Continuing Grant
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
  • 批准号:
    10761044
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
  • 批准号:
    10728925
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
  • 批准号:
    10757309
  • 财政年份:
    2023
  • 资助金额:
    $ 6.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了