Statistical Detection and Biochemical Classification of Cancer Driver Mutation Patterns in Biological Networks
生物网络中癌症驱动突变模式的统计检测和生化分类
基本信息
- 批准号:9101334
- 负责人:
- 金额:$ 19.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAgonistBiochemicalBiologicalClassificationComputing MethodologiesDataDetectionDevelopmentDrug TargetingEffectivenessEpigenetic ProcessEvaluationGene MutationGenesGeneticGoalsHeterogeneityHumanIndividualInternationalKnowledgeMalignant NeoplasmsMapsMarkov chain Monte Carlo methodologyMetabolicMethodsMutateMutationOutcomePathway interactionsPatientsPatternProcessRoleSamplingSignal PathwaySomatic MutationStatistical MethodsSystemSystems BiologyTestingThe Cancer Genome AtlasTherapeuticVariantactionable mutationantitumor drugbasebiological systemscancer classificationcancer genomecancer therapycancer typedrug developmentexome sequencinggenome-wide analysisgenomic profilesinnovationinsightinterestnovelpublic health relevancescreeningsuccesstooltumortumor progressionwhole genome
项目摘要
DESCRIPTION (provided by applicant): Cancer arises from somatically acquired genetic and epigenetic alterations. While large consortia like The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) have profiled genomic somatic mutations of thousands of tumor samples from various cancer types based on whole-genome/exome sequencing, meaningful mechanistic interpretation of these gene variation results are still very limited. One basic yet challenging task is to distinguish driver mutations, which are causally implicated in cancer development, from passenger mutations, which occur randomly with neutral effect. Another critical task is to map, trace, and interpret the functional impact of drivr mutations within biological networks. In a network context, driver mutations associated with genes within a pathway often show a mutually exclusive pattern, meaning that each patient carries exactly one mutation in the pathway, which is sufficient to perturb the function of that pathway. Another prominent pattern is that driver mutations of genes from several different pathways may co-occur, since perturbation of multiple pathways is required for tumor formation. Screening for mutual exclusivity and co-occurrence patterns can greatly facilitate the identification of novel sets of related driver gene mutations, their associated driver pathways, and functional relationships between these driver pathways. Although several de novo driver mutation gene set discovery methods have been proposed in the past few years, they have major limitations due to computational feasibility, an inability to deal with mutational heterogeneity across patients, and lack of biochemical interpretation. The overall goal of this proposal is to develop and combine advance sequence variation analyses with complementary biological network analyses into a highly novel systems biology approach that will: i) detect sets of related mutations in driver regulatory/signaling pathways, ii) classify these pathways as stimulated, inhibited, or mixed with respect to their role in the tumor development process, and iii) predict direct metabolic outcomes of these perturbed pathways. Our specific aims are: 1) to develop a statistical method for de novo discovery of mutually exclusive and co-occurrent sets of driver mutations; and 2) to develop a pathway mapping and classification method for related sets of driver mutations. The identification and biochemical interpretation of aggregated tumor mutations from driver mutation gene sets to inhibited/stimulated pathways to perturbed biological network will provide new mechanistic insights in tumor progression at a systems level. Also with this information, potential drug targets in the detected driver pathways can be classified as requiring agonist or antagonist drug development, making drug target evaluation and prioritization much more effective. Furthermore, identification of co-occurrence between specific genes and pathways may aid in the development of multi- therapeutic cancer treatments that are optimized to groups of patients showing the same mutational patterns of co-occurrence.
描述(申请人提供):癌症源于躯体获得性遗传和表观遗传改变。虽然像癌症基因组图谱(TCGA)和国际癌症基因组联合会(ICGC)这样的大联盟已经基于全基因组/外显子组测序分析了来自不同癌症类型的数千个肿瘤样本的基因组体细胞突变,但对这些基因变异结果的有意义的机制解释仍然非常有限。一个基本但具有挑战性的任务是区分司机突变和乘客突变,前者与癌症发生有因果关系,后者是随机发生的,影响是中性的。另一项关键任务是绘制、追踪和解释DRIVR突变在生物网络中的功能影响。在网络环境中,与一条通路中的基因相关的驱动程序突变通常显示出一种相互排斥的模式,这意味着每个患者在该通路中恰好携带一个突变,这足以扰乱该通路的功能。另一个突出的模式是,来自几个不同途径的基因的驱动突变可能会同时发生,因为肿瘤的形成需要多个途径的扰动。筛选相互排他性和共现模式可以极大地促进识别新的相关驱动基因突变集,它们相关的驱动通路,以及这些驱动通路之间的功能关系。尽管在过去的几年里已经提出了几种从头开始的驱动器突变基因集发现方法,但由于计算的可行性、无法处理患者之间的突变异质性以及缺乏生化解释,这些方法有很大的局限性。这项建议的总体目标是发展和结合先进的序列变异分析和互补的生物网络分析,形成一种高度新颖的系统生物学方法,该方法将:i)检测驱动调节/信号通路中的相关突变集合,ii)根据这些通路在肿瘤发展过程中的作用将这些通路分类为刺激、抑制或混合,以及iii)预测这些扰动通路的直接代谢结果。我们的具体目标是:1)开发一种统计方法,用于从头发现相互排斥和共存的驱动程序突变集;以及2)开发相关驱动程序突变集的路径映射和分类方法。从驱动突变基因集到抑制/刺激通路到扰乱的生物网络,对聚集的肿瘤突变的鉴定和生化解释将在系统水平上为肿瘤进展提供新的机制见解。同样有了这些信息,检测到的驱动通路中的潜在药物靶点可以被归类为需要激动剂或拮抗剂药物开发,使药物靶点评估和优先排序更加有效。此外,识别特定基因和途径之间的共同出现可能有助于开发多种治疗癌症的治疗方法,这些治疗方法针对表现出相同的共同发生突变模式的患者群体进行优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hunter Nathaniel Moseley其他文献
Hunter Nathaniel Moseley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hunter Nathaniel Moseley', 18)}}的其他基金
Statistical Detection and Biochemical Classification of Cancer Driver Mutation Patterns in Biological Networks
生物网络中癌症驱动突变模式的统计检测和生化分类
- 批准号:
9247018 - 财政年份:2016
- 资助金额:
$ 19.54万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 19.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 19.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
Identification and characterization of a plant growth promoter from wild plants: is this a novel plant hormone agonist?
野生植物中植物生长促进剂的鉴定和表征:这是一种新型植物激素激动剂吗?
- 批准号:
23K05057 - 财政年份:2023
- 资助金额:
$ 19.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




