A novel role for endogenous fructose in ischemic acute kidney injury

内源性果糖在缺血性急性肾损伤中的新作用

基本信息

项目摘要

DESCRIPTION (provided by applicant): Acute kidney injury is a common cause of hospitalization with high mortality affecting 30% of patients admitted to the intensive care unit. After decades of important discoveries regarding its pathophysiology, no clinically applicable treatment to accelerate kidney recovery in acute kidney injury has emerged. The polyol pathway is a metabolic route constituted by two enzymes, aldose reductase and sorbitol dehydrogenase. Aldose reductase converts glucose to sorbitol while sorbitol dehydrogenase metabolizes sorbitol to fructose. Our preliminary data in mice with ischemic acute kidney injury demonstrate that there is a significant activation of the polyol pathway in the kidney cortex as noted by high level of aldose reductase, and fructose accumulation (endogenous fructose). Our published data demonstrate that in the kidney the metabolism of fructose by the enzyme fructokinase results in ATP depletion and the generation of uric acid and oxidants causing acute tubulointerstitial injury. These observations lead to the overall hypothesis of this application that ischemic acute kidney injury activates the polyol pathway and fructokinase which contributes to proximal tubule cell death. The significance of this proposal is that inhibition of the polyol pathway is feasible n patients with acute kidney injury due to the availability of inhibitors (epalrestat, ranirestat). Te innovation of this proposal is that a role for endogenous fructose and renal fructokinase has never been considered in ischemic acute kidney injury. The research design to study the deleterious role of the polyol pathway and endogenous fructose production and metabolism will involve the characterization of 1) the activation of the polyol pathway and its deleterious role in ischemic acute kidney injury by using wild type and aldose reductase deficient mice, 2) the activation of fructokinase and endogenous fructose metabolism and its deleterious role in ischemic acute kidney injury by utilizing wild type and fructokinase global and proximal tubule deficient mice and 3) the fructose downstream mechanisms that leads to proximal tubule dysfunction, injury and cell death by employing human proximal tubular cells, (HK-2). The applicant will rely on an excellent mentorship program with Dr. Richard Johnson as his primary Mentor. Dr Johnson is one of the leading researchers in fructose, uric acid and the role they play in endothelial dysfunction, metabolic syndrome and kidney disease. He is currently the Division Head and Professor of Medicine at the University of Colorado Denver, Division of Renal Diseases and Hypertension. In addition, Dr. Sarah Faubel, Associate Professor of Medicine, at University of Colorado Denver, is his secondary Mentor and a leading investigator in ischemic acute kidney injury with expertise in animal models, characterization of kidney injury and multiorgan dysfunction. The applicant will also rely on the expertise and technology from several consultants outside the Renal Division, Dr Mark Petrash, Professor and Vice Chair for Research, Department of Ophthalmology, who is a world expert on aldose reductase is serving as a collaborator, Dr Scott Lucia (Chief of Renal and genitourinary pathology) awill also act as collaborator in the assessment of kidney injury and Dr Bruce Molitoris, Professor of Medicine at Indiana University will assist Dr Lanaspa in the development of proximal tubule fructokinase deficient mice This award will allow the applicant to develop the skills necessary to become an independent scientist and will provide for intellectual development through both didactic programs and lectures and by facilitating interactions with a variety of researchers in different departments and institutions.
描述(由申请人提供):急性肾损伤是住院的常见原因,影响30%入住重症监护室的患者的高死亡率。经过几十年的重要发现,其病理生理学,没有临床适用的治疗,以加速肾脏恢复急性肾损伤已经出现。多元醇途径是由醛糖还原酶和山梨醇脱氢酶两种酶组成的代谢途径。醛糖还原酶将葡萄糖转化为山梨糖醇,而山梨糖醇脱氢酶将山梨糖醇代谢为果糖。我们在患有缺血性急性肾损伤的小鼠中的初步数据表明,如通过高水平的醛糖还原酶和果糖积累(内源性果糖)所指出的,在肾皮质中存在多元醇途径的显著激活。我们发表的数据表明,在肾脏中,果糖激酶代谢果糖导致ATP耗竭,尿酸和氧化剂的产生,引起急性肾小管间质损伤。这些观察结果导致本申请的总体假设,即缺血性急性肾损伤激活多元醇途径和果糖激酶,这有助于近端小管细胞死亡。该提议的重要性在于,由于抑制剂(依帕司他、兰尼司他)的可用性,多元醇途径的抑制对于急性肾损伤患者是可行的。该建议的创新之处在于,内源性果糖和肾果糖激酶在缺血性急性肾损伤中的作用从未被考虑过。研究多元醇途径和内源性果糖产生和代谢的有害作用的研究设计将涉及以下表征:1)多元醇途径的活化及其在以下方面的有害作用: 通过使用野生型和醛糖还原酶缺陷小鼠的缺血性急性肾损伤,2)通过使用野生型和果糖激酶全局和近端小管缺陷小鼠的果糖激酶和内源性果糖代谢的活化及其在缺血性急性肾损伤中的有害作用,和3)通过使用人近端小管细胞的导致近端小管功能障碍、损伤和细胞死亡的果糖下游机制,(HK-2)。申请人将依靠一个优秀的导师计划与博士理查德约翰逊作为他的主要导师。约翰逊博士是果糖、尿酸及其在内皮功能障碍、代谢综合征和肾脏疾病中所起作用的主要研究人员之一。他目前是科罗拉多丹佛大学肾脏疾病和高血压系主任和医学教授。此外,科罗拉多丹佛大学医学副教授Sarah Faubel博士是他的二级导师,也是缺血性急性肾损伤的主要研究者,在动物模型、肾损伤和多器官功能障碍的表征方面具有专长。申请人还将依靠肾脏部门以外的几位顾问的专业知识和技术,眼科系教授兼研究副主席Mark Petrash博士是醛糖还原酶的世界专家,Scott Lucia博士是合作者(肾脏和泌尿生殖病理学主任)也将作为评估肾损伤和布鲁斯莫利托里斯博士的合作者,印第安纳州大学医学教授将协助Lanaspa博士开发近端小管果糖激酶缺陷小鼠。该奖项将使申请人能够发展成为独立科学家所需的技能,并将通过教学计划和讲座以及促进与不同部门的各种研究人员的互动来促进智力发展,机构职能体系

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Causal or Noncausal Relationship of Uric Acid With Diabetes.
  • DOI:
    10.2337/db15-0532
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Johnson RJ;Merriman T;Lanaspa MA
  • 通讯作者:
    Lanaspa MA
Bioactivity-Guided Identification of Botanical Inhibitors of Ketohexokinase.
酮己糖激酶植物抑制剂的生物活性引导鉴定。
  • DOI:
    10.1371/journal.pone.0157458
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Le,MyPhuongT;Lanaspa,MiguelA;Cicerchi,ChristinaM;Rana,Jatinder;Scholten,JeffreyD;Hunter,BrandiL;Rivard,ChristopherJ;Randolph,RKeith;Johnson,RichardJ
  • 通讯作者:
    Johnson,RichardJ
Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice.
  • DOI:
    10.1038/ncomms14181
  • 发表时间:
    2017-02-13
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Andres-Hernando A;Li N;Cicerchi C;Inaba S;Chen W;Roncal-Jimenez C;Le MT;Wempe MF;Milagres T;Ishimoto T;Fini M;Nakagawa T;Johnson RJ;Lanaspa MA
  • 通讯作者:
    Lanaspa MA
Uric acid in metabolic syndrome: From an innocent bystander to a central player.
  • DOI:
    10.1016/j.ejim.2015.11.026
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Kanbay M;Jensen T;Solak Y;Le M;Roncal-Jimenez C;Rivard C;Lanaspa MA;Nakagawa T;Johnson RJ
  • 通讯作者:
    Johnson RJ
Fructose and uric acid in diabetic nephropathy.
  • DOI:
    10.1007/s00125-015-3650-4
  • 发表时间:
    2015-09
  • 期刊:
  • 影响因子:
    8.2
  • 作者:
    Bjornstad P;Lanaspa MA;Ishimoto T;Kosugi T;Kume S;Jalal D;Maahs DM;Snell-Bergeon JK;Johnson RJ;Nakagawa T
  • 通讯作者:
    Nakagawa T
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miguel Angel Lanaspa Garcia其他文献

Miguel Angel Lanaspa Garcia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miguel Angel Lanaspa Garcia', 18)}}的其他基金

A Novel Role for Vasopressin in Fructose-Induced Metabolic Syndrome
加压素在果糖诱导的代谢综合征中的新作用
  • 批准号:
    10548048
  • 财政年份:
    2020
  • 资助金额:
    $ 8.97万
  • 项目类别:
A Novel Role for Vasopressin in Fructose-Induced Metabolic Syndrome
加压素在果糖诱导的代谢综合征中的新作用
  • 批准号:
    10756244
  • 财政年份:
    2020
  • 资助金额:
    $ 8.97万
  • 项目类别:
Targeting fructokinase, endogenous fructose production and purine degradation for the prevention and treatment of hereditary fructose intolerance
针对果糖激酶、内源性果糖产生和嘌呤降解来预防和治疗遗传性果糖不耐受
  • 批准号:
    9891049
  • 财政年份:
    2016
  • 资助金额:
    $ 8.97万
  • 项目类别:
Targeting fructokinase, endogenous fructose production and purine degradation for the prevention and treatment of hereditary fructose intolerance
针对果糖激酶、内源性果糖产生和嘌呤降解来预防和治疗遗传性果糖不耐受
  • 批准号:
    10543664
  • 财政年份:
    2016
  • 资助金额:
    $ 8.97万
  • 项目类别:
A novel Role for endogenous fructose production and metabolism in the pathogenesis of contrast-induced nephropathy
内源性果糖产生和代谢在造影剂肾病发病机制中的新作用
  • 批准号:
    9015439
  • 财政年份:
    2015
  • 资助金额:
    $ 8.97万
  • 项目类别:
A novel role for endogenous fructose in ischemic acute kidney injury
内源性果糖在缺血性急性肾损伤中的新作用
  • 批准号:
    8690049
  • 财政年份:
    2012
  • 资助金额:
    $ 8.97万
  • 项目类别:
A novel role for endogenous fructose in ischemic acute kidney injury
内源性果糖在缺血性急性肾损伤中的新作用
  • 批准号:
    8511623
  • 财政年份:
    2012
  • 资助金额:
    $ 8.97万
  • 项目类别:
A novel role for endogenous fructose in ischemic acute kidney injury
内源性果糖在缺血性急性肾损伤中的新作用
  • 批准号:
    8352397
  • 财政年份:
    2012
  • 资助金额:
    $ 8.97万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 8.97万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了