Effects of aging on stem cell function through systemic signals and mTOR

衰老通过系统信号和 mTOR 对干细胞功能的影响

基本信息

项目摘要

My driving ambition is to study the relationship between metabolism and aging as an independent investigator. My interest in metabolism started with the metabolic pathways courses I took in college and was cemented in graduate school when I began to study the literature on calorie restriction and life span extension. Learning about calorie restriction made me think about how cells and the body as a whole respond to systemic energy levels. Because of this I decided to concentrate my graduate work at Johns Hopkins School of Medicine on studying how systemic nutrient fluxes are sensed by cells and act in regulation of metabolism. Following this same interest on how cells respond to external signals, I concentrated my postdoctoral work at Harvard Medical School/DFCI on studying the dynamics of hormonal signal transduction. To expand the depth and breadth of my scientific training I have decided to work with Dr. Thomas Rando at Stanford Medical School to gain further expertise in the fields of aging and stem cell biology. Dr. Rando and I share a common view that in many ways aging can be thought of as a systemic condition. Like metabolic diseases, many, if not most aspects of aging may be due to the cellular response to an altered and dysfunctional systemic environment. Understanding the aged systemic environment and how cells respond to this environment will likely yield treatments to ameliorate or prevent many pathologies of aging. Combining my expertise in metabolism and signaling with the skills in aging research and stem cell biology I am developing while working with Dr. Rando puts me in a unique position to be able to study how aging impacts stem cell, tissue, and organismal function in ways that have not been done before. It is well known that with aging there is a decline in tissue homeostasis. The primary function of adult stem cells is to maintain tissue homeostasis by providing the cellular and genetic material that ensures proper tissue function. However, decline in stem cell function with aging is a major contributing factor in age-related tissue dysfunction. Here, we will use adult muscle stem cells (satellite cells) as a model to study how stem cells respond to aging. The foundation of this proposal is based on our observation that satellite cells from aged animals have an aberrant induction of mTORC1 signaling. The mTORC1 signaling complex is a major mediator of the cellular response to external metabolic and hormonal signals and has been widely implicated as a factor in aging and life span. Therefore, we have two major goals in this proposal: 1) to understand the functional role of mTORC1 signaling in satellite cells and 2) to identify the upstream signals which contribute to aberrant mTORC1 activity in satellite cells from aged animals. Using satellite cell specific genetic models to modulate mTORC1 activity our preliminary data show that induction of mTORC1 is sufficient to recapitulate a host of the age-associated satellite cell functional changes: decline in number, loss of self-renewal, and reduced capacity for muscle regeneration. Additionally, we have found that HGF, a serum hormone known to be elevated in aging, is sufficient to induce mTORC1 activity in quiescent satellite cells. These data suggest a model where in aging, systemic factors, HGF, lead to chronic induction of mTORC1 activity in satellite cells which contributes to agerelated functional decline. In this proposal we will test this model by using genetic and pharmacologic approaches to suppress mTORC1 and HGF signaling in satellite cells to prevent age-related satellite cell dysfunction. The implications of this work will be the identification of novel pathways involved in the effects of aging on stem cell function and the molecular mechanisms by which they act, providing a basis for future work in my independent career. Long term goals of this proposal include the therapeutic use of simple dietary or pharmacologic interventions targeting mTORC1 or HGF to correct stem cell dysfunction and ameliorate age-related tissue pathologies. The goals of this proposal will be strongly aided by the environment and mentorship provided by Dr. Rando. The Rando lab as part of the Glenn Foundation for Aging Research at Stanford with Drs. Anne Brunet and Steve Artandi cultivate a productive and creative environment for aging and stem cell research. I have enlisted Dr. Brian Kennedy of The Buck Institute for Research on Aging as a co-mentor and Dr. Arvind Ramanathan as a collaborator for their guidance and expertise in the fields of metabolism and TOR signaling as they relate to aging. The work proposed here will give me the resources and opportunity to further develop my research strategy and goals for a smooth transition into an independent career. This will be facilitated by the mentorship of Drs. Rando and Kennedy who will guide me on the logistical, philosophical, and ethical issues of being an independent investigator. Additionally, Drs. Rando and Kennedy will support this transition by using their large network in academic science to help me identify appropriate faculty position openings and will advise me with decisions on how to choose the best institute/environment to start my independent research career.
My driving ambition is to study the relationship between metabolism and aging as an independent investigator. My interest in metabolism started with the metabolic pathways courses I took in college and was cemented in graduate school when I began to study the literature on calorie restriction and life span extension. Learning about calorie restriction made me think about how cells and the body as a whole respond to systemic energy levels. Because of this I decided to concentrate my graduate work at Johns Hopkins School of Medicine on studying how systemic nutrient fluxes are sensed by cells and act in regulation of metabolism. Following this same interest on how cells respond to external signals, I concentrated my postdoctoral work at Harvard Medical School/DFCI on studying the dynamics of hormonal signal transduction. To expand the depth and breadth of my scientific training I have decided to work with Dr. Thomas Rando at Stanford Medical School to gain further expertise in the fields of aging and stem cell biology. Dr. Rando and I share a common view that in many ways aging can be thought of as a systemic condition. Like metabolic diseases, many, if not most aspects of aging may be due to the cellular response to an altered and dysfunctional systemic environment. Understanding the aged systemic environment and how cells respond to this environment will likely yield treatments to ameliorate or prevent many pathologies of aging. Combining my expertise in metabolism and signaling with the skills in aging research and stem cell biology I am developing while working with Dr. Rando puts me in a unique position to be able to study how aging impacts stem cell, tissue, and organismal function in ways that have not been done before. It is well known that with aging there is a decline in tissue homeostasis. The primary function of adult stem cells is to maintain tissue homeostasis by providing the cellular and genetic material that ensures proper tissue function. However, decline in stem cell function with aging is a major contributing factor in age-related tissue dysfunction. Here, we will use adult muscle stem cells (satellite cells) as a model to study how stem cells respond to aging. The foundation of this proposal is based on our observation that satellite cells from aged animals have an aberrant induction of mTORC1 signaling. The mTORC1 signaling complex is a major mediator of the cellular response to external metabolic and hormonal signals and has been widely implicated as a factor in aging and life span. Therefore, we have two major goals in this proposal: 1) to understand the functional role of mTORC1 signaling in satellite cells and 2) to identify the upstream signals which contribute to aberrant mTORC1 activity in satellite cells from aged animals. Using satellite cell specific genetic models to modulate mTORC1 activity our preliminary data show that induction of mTORC1 is sufficient to recapitulate a host of the age-associated satellite cell functional changes: decline in number, loss of self-renewal, and reduced capacity for muscle regeneration. Additionally, we have found that HGF, a serum hormone known to be elevated in aging, is sufficient to induce mTORC1 activity in quiescent satellite cells. These data suggest a model where in aging, systemic factors, HGF, lead to chronic induction of mTORC1 activity in satellite cells which contributes to agerelated functional decline. In this proposal we will test this model by using genetic and pharmacologic approaches to suppress mTORC1 and HGF signaling in satellite cells to prevent age-related satellite cell dysfunction. The implications of this work will be the identification of novel pathways involved in the effects of aging on stem cell function and the molecular mechanisms by which they act, providing a basis for future work in my independent career. Long term goals of this proposal include the therapeutic use of simple dietary or pharmacologic interventions targeting mTORC1 or HGF to correct stem cell dysfunction and ameliorate age-related tissue pathologies. The goals of this proposal will be strongly aided by the environment and mentorship provided by Dr. Rando. The Rando lab as part of the Glenn Foundation for Aging Research at Stanford with Drs. Anne Brunet and Steve Artandi cultivate a productive and creative environment for aging and stem cell research. I have enlisted Dr. Brian Kennedy of The Buck Institute for Research on Aging as a co-mentor and Dr. Arvind Ramanathan as a collaborator for their guidance and expertise in the fields of metabolism and TOR signaling as they relate to aging. The work proposed here will give me the resources and opportunity to further develop my research strategy and goals for a smooth transition into an independent career. This will be facilitated by the mentorship of Drs. Rando and Kennedy who will guide me on the logistical, philosophical, and ethical issues of being an independent investigator. Additionally, Drs. Rando and Kennedy will support this transition by using their large network in academic science to help me identify appropriate faculty position openings and will advise me with decisions on how to choose the best institute/environment to start my independent research career.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Thomas Rodgers其他文献

Joseph Thomas Rodgers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Thomas Rodgers', 18)}}的其他基金

Effects of aging on stem cell function through systemic signals and mTOR
衰老通过系统信号和 mTOR 对干细胞功能的影响
  • 批准号:
    9193141
  • 财政年份:
    2016
  • 资助金额:
    $ 24.04万
  • 项目类别:
Effects of aging on stem cell function through systemic signals and mTOR
衰老通过系统信号和 mTOR 对干细胞功能的影响
  • 批准号:
    8548217
  • 财政年份:
    2012
  • 资助金额:
    $ 24.04万
  • 项目类别:
Effects of aging on stem cell function through systemic signals and mTOR
衰老通过系统信号和 mTOR 对干细胞功能的影响
  • 批准号:
    8442577
  • 财政年份:
    2012
  • 资助金额:
    $ 24.04万
  • 项目类别:

相似海外基金

Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
  • 批准号:
    10653464
  • 财政年份:
    2023
  • 资助金额:
    $ 24.04万
  • 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
  • 批准号:
    2316108
  • 财政年份:
    2023
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
  • 批准号:
    BB/V006738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
  • 批准号:
    10294664
  • 财政年份:
    2020
  • 资助金额:
    $ 24.04万
  • 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
  • 批准号:
    422882
  • 财政年份:
    2019
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
  • 批准号:
    9811094
  • 财政年份:
    2019
  • 资助金额:
    $ 24.04万
  • 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
  • 批准号:
    18K16103
  • 财政年份:
    2018
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
  • 批准号:
    1823881
  • 财政年份:
    2018
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
  • 批准号:
    369385245
  • 财政年份:
    2017
  • 资助金额:
    $ 24.04万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了