Defining the Transcriptional Regulation and Genomic Organization of FAIM3 and PIGR, Human Ig Receptors Involved in Immunity, Auto-Immune Disease, and Lymphoma
定义 FAIM3 和 PIGR、参与免疫、自身免疫性疾病和淋巴瘤的人类 Ig 受体的转录调控和基因组组织
基本信息
- 批准号:9395470
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAffinityAlpha CellAutoimmune DiseasesAutoimmunityB-Cell LymphomasB-LymphocytesBindingBiological AssayCRISPR/Cas technologyCell LineageCellsChIP-seqChromatinCodeComplementary DNAControl LocusDNADNA Sequence AlterationDataDevelopmentDiseaseElementsEnhancersEpigenetic ProcessEpithelial CellsGene ExpressionGene Expression RegulationGene TargetingGenesGeneticGenetic PolymorphismGenetic TranscriptionGenomeGenomicsHumanIgA receptorImmuneImmune responseImmunityImmunoglobulin AImmunoglobulin MIndividualInfectionInheritedLinkLuciferasesLymphocyteLymphoid CellLymphomaMalignant NeoplasmsMalignant lymphoid neoplasmMeasuresMediatingMolecular ProfilingMutationOncogene DeregulationPathogenesisPositioning AttributePrecipitationProteinsRNA SplicingRecurrenceRegulationRegulator GenesRegulatory ElementRoleSmall Interfering RNASpecificityStructureSurfaceTestingTranscriptTranscriptional RegulationUntranslated RNAVariantcell typecellular developmentchromosome conformation captureexperienceexperimental studygenetic profilingimmune functionimmunoglobulin receptorknock-downleukemia/lymphomametaplastic cell transformationnoveloverexpressionpathogenreceptorthree dimensional structuretooltranscription factortranscriptome
项目摘要
ABSTRACT
A fundamental outstanding question in cellular development remains how epigenetic mechanisms of gene
regulation are coordinated during development and their role in disease. Genome structure and topology, local
chromatin landscape, and non-coding RNAs all contribute to epigenetic transcriptional regulation. Moreover,
alterations in these elements or factors can perturb gene expression and promote disease pathogenesis, as
shown for B cell lymphoma (Koues et al, Immunity 2015). While the general principles of these mechanisms
are widely accepted, the specific identity and interplay of these elements at individual gene loci is largely
unknown. Therefore, the proposed studies will define regulatory interactions at a single locus containing two
genes that are essential for normal immune function and, when deregulated, promote auto-immunity or cancer.
FAIM3 (TOSO, FCMR) is an IgM receptor expressed in innate and adaptive immune cells, and PIGR encodes
the IgA receptor and secreted IgA in mucosal epithelial cells. Importantly, preliminary studies show that
regulatory elements and a lncRNA in this locus are deregulated in B cell lymphomas and leukemia. By
elucidating the regulatory mechanisms that control expression of these genes in a cell-specific manner, the key
elements necessary for lineage specificity and how these regulatory mechanisms are corrupted in lymphoid
cancers will be revealed. Aim 1 will define the genomic organization and 3-dimensional structure of the locus.
In addition, Aim 1 studies will determine the contribution of regulatory elements to maintaining this structure
and transcriptional control of FAIM3, PIGR, and neighboring genes. Aim 2 will elucidate the transcription
factors that serve as key regulators of FAIM3 and PIGR and determine how genetic polymorphisms and
mutations alter this regulation through perturbation of transcription factor binding. Aim 3 will characterize a
novel long non-coding RNA, confirming its full sequence, verifying its exonic structure, and determining
whether it contributes to the transcriptional control of FAIM3 or PIGR. Upon completion of these studies, the
regulatory elements and mechanisms that control the cell-specific expression of FAIM3 and PIGR will be
defined, as will how these genes are altered in lymphoid cancer. The impact of these studies will reach beyond
a single gene locus, by providing a window into the intricate interplay of epigenetic and genetic mechanisms of
gene regulation and deregulation in normal development and cancer.
摘要
细胞发育中的一个基本的悬而未决的问题仍然是基因的表观遗传机制是如何改变的。
调节在发育过程中是协调的,它们在疾病中的作用。基因组结构和拓扑学,局部
染色质景观和非编码RNA都有助于表观遗传转录调控。此外,委员会认为,
这些元件或因子的改变可扰乱基因表达并促进疾病发病,
示出了B细胞淋巴瘤(Koues等人,Immunity 2015)。虽然这些机制的一般原则
被广泛接受,这些元件在单个基因位点上的特定身份和相互作用在很大程度上是
未知因此,拟议的研究将确定在一个单一的基因座,含有两个调控相互作用,
这些基因对正常免疫功能至关重要,当失调时,会促进自身免疫或癌症。
FAIM3(TOSO,FCMR)是在先天性和适应性免疫细胞中表达的IgM受体,并且PIGR编码
粘膜上皮细胞伊加受体和分泌型伊加。重要的是,初步研究表明,
该基因座中的调控元件和lncRNA在B细胞淋巴瘤和白血病中被失调。通过
阐明了以细胞特异性方式控制这些基因表达的调控机制,
细胞系特异性所必需的元素,以及这些调节机制在淋巴细胞中是如何被破坏的。
癌症将被揭露。目标1将定义基因组组织和基因座的三维结构。
此外,目标1研究将确定调控元件对维持这种结构的贡献
以及FAIM3、PIGR和邻近基因的转录控制。目标2将阐明转录
作为FAIM3和PIGR的关键调节因子,并决定遗传多态性和
突变通过转录因子结合的扰动改变这种调节。目标3将描述
新的长非编码RNA,确认其全序列,验证其外显子结构,并确定
它是否有助于FAIM3或PIGR的转录控制。在完成这些研究后,
控制FAIM3和PIGR的细胞特异性表达的调控元件和机制将被
这些基因在淋巴癌中是如何改变的。这些研究的影响将超越
一个单一的基因位点,通过提供一个窗口,复杂的相互作用的表观遗传和遗传机制,
正常发育和癌症中的基因调控和失调。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Andrews其他文献
Jared Andrews的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Research Grant