Regulation of translesion synthesis by the bacterial replisome

细菌复制体对跨损伤合成的调节

基本信息

  • 批准号:
    9269594
  • 负责人:
  • 金额:
    $ 32.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-05-15 至 2020-04-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): This project utilizes novel single-molecule approaches to elucidate the mechanisms by which the bacterial replisome regulates access of translesion polymerases to the replication fork and mediates translesion synthesis (TLS) across DNA lesions that block the replisome. Proper regulation of TLS is essential because TLS polymerases are significantly more error-prone than their replicative counterparts. Improper access of TLS polymerases to the replication fork is correlated with increased mutation rates in both prokaryotes and eukaryotes. Answers to fundamental mechanistic questions regarding how TLS occurs remain obscured in ensemble biochemical experiments due to the dynamic nature of TLS polymerase exchange. This project will exploit new developments in single-molecule manipulation and imaging to detect the many structural intermediates of the replisome that transiently arise during translesion synthesis. The three specific aims are: Aim 1) Determine how the processivity factor mediates polymerase exchange. Processive DNA synthesis by the polymerases of E. coli requires interactions with the bacterial processivity factor, ß. The ß clap is believed to be a loading platform for multiple polymerases but how polymerase-clamp interactions mediate polymerase trafficking at the replication fork remains unclear. This aim will utilize single-molecule approaches to characterize the kinetics of polymerase exchange and elucidate how ß-polymerase interactions facilitate switching. In parallel, single-molecule imaging of individual fluorescently labeled polymerases will directly quantify polymerase composition and conformation on ß. Aim 2) Determine how TLS polymerases associate with the replisome and carry out TLS. TLS is believed to occur either at moving replication forks through polymerase switching reactions or in ssDNA gaps generated by the replisome translocating past the lesion and repriming synthesis downstream. In this aim, single-molecule imaging of fluorescently labeled replisome components in vitro and in cells will be used to determine how TLS polymerases interact with a replisome that has collided with a leading strand lesion. Aim 3) Identify regulators of TLS within the SOS DNA damage response. Widespread DNA damage leads to induction of the SOS DNA damage response, which results in the transcriptional upregulation of over 40 gene products involved in DNA repair and TLS. On their own, SOS levels of TLS polymerases significantly inhibit replication, leading to suggestions that TLS polymerases may slow replication to allow DNA repair to occur. Yet, strains constitutively active for the SOS response appear to grow normally, indicating that SOS gene products play a role in regulating TLS polymerase access to the fork. We will determine how high concentrations of TLS polymerases remodel the replisome and work to understand how other SOS genes further regulate TLS.
 描述(由申请人提供):该项目利用新颖的单分子方法来阐明细菌复制体调节跨病变聚合酶对复制叉的访问并介导跨病变合成(TLS)的机制,从而阻止复制体。对TLS的适当调控是至关重要的,因为TLS聚合酶明显比它们的复制对应物更容易出错。TLS聚合酶对复制分叉的不正确访问与原核生物和真核生物中突变率的增加有关。由于TLS聚合酶交换的动态性质,在整体生化实验中,关于TLS如何发生的基本机制问题的答案仍然模糊不清。该项目将利用单分子操作和成像方面的新进展,以检测在跨损伤合成过程中瞬时出现的复制体的许多结构中间体。这三个具体目标是:目的1)确定加工性因子如何介导聚合酶交换。大肠杆菌聚合酶的过程性DNA合成需要与细菌的过程性因子进行相互作用。Bclap被认为是多个聚合酶的装载平台,但聚合酶-钳子相互作用如何在复制叉处介导聚合酶运输仍不清楚。这一目标将利用单分子方法来表征聚合酶交换的动力学,并阐明ç-聚合酶相互作用如何促进转换。并行的单分子成像 单个荧光标记聚合酶的组成和构象将直接定量。目的2)确定TLS聚合酶如何与复制体结合并进行TLS。TLS被认为要么发生在通过聚合酶交换反应移动的复制叉处,要么发生在复制体移位经过病变并重新启动下游合成所产生的单链DNA缺口中。在这个目标中,将使用在体外和细胞中荧光标记的复制体成分的单分子成像来确定TLS聚合酶如何与与领先链损伤相碰撞的复制体相互作用。目的3)确定SOS DNA损伤反应中TLS的调节因子。广泛的DNA损伤导致SOS DNA损伤反应的诱导,导致参与DNA修复和TLS的40多个基因产物转录上调。就其本身而言,TLS聚合酶的SOS水平显著抑制复制,从而导致TLS聚合酶可能减缓复制以允许DNA修复发生。然而,具有SOS反应活性的菌株似乎生长正常,这表明SOS基因产物在调节TLS聚合酶进入叉子的过程中发挥了作用。我们将确定高浓度的TLS聚合酶如何重塑复制体,并努力了解其他SOS基因如何进一步调节TLS。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph J. Loparo其他文献

Single-Molecule Studies of a ParB Family Chromosome Segregation Protein from <em>Bacillussubtilis</em>
  • DOI:
    10.1016/j.bpj.2012.11.3236
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas G.W. Graham;Linda Song;Xindan Wang;Candice M. Etson;Antoine Van Oijen;David Z. Rudner;Joseph J. Loparo
  • 通讯作者:
    Joseph J. Loparo
Single-molecule Observations of Replisome Structure and Function
  • DOI:
    10.1016/j.bpj.2008.12.3655
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph J. Loparo;Samir M. Hamdan;Charles C. Richardson;M. van Antoine Oijen
  • 通讯作者:
    M. van Antoine Oijen
Visualizing the Dynamics of DNA Polymerase Exchange Through Simultaneous Single-Molecule Measurements of Replisome Composition and Function
  • DOI:
    10.1016/j.bpj.2010.12.262
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph J. Loparo
  • 通讯作者:
    Joseph J. Loparo
Measuring jumping during DNA target search
  • DOI:
    10.1016/j.bpj.2022.11.619
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Allen C. Price;Van Nguyen;Joseph J. Loparo
  • 通讯作者:
    Joseph J. Loparo

Joseph J. Loparo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph J. Loparo', 18)}}的其他基金

Molecular mechanisms of pathway choice in DNA double strand break repair
DNA双链断裂修复途径选择的分子机制
  • 批准号:
    10646302
  • 财政年份:
    2022
  • 资助金额:
    $ 32.63万
  • 项目类别:
Validating a potential interaction between error-prone polymerases and SSB as a therapeutic target for Mycobacterium tuberculosis
验证易错聚合酶和 SSB 之间潜在的相互作用作为结核分枝杆菌的治疗靶点
  • 批准号:
    10189804
  • 财政年份:
    2021
  • 资助金额:
    $ 32.63万
  • 项目类别:
Validating a potential interaction between error-prone polymerases and SSB as a therapeutic target for Mycobacterium tuberculosis
验证易错聚合酶和 SSB 之间潜在的相互作用作为结核分枝杆菌的治疗靶点
  • 批准号:
    10364697
  • 财政年份:
    2021
  • 资助金额:
    $ 32.63万
  • 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
  • 批准号:
    10615061
  • 财政年份:
    2015
  • 资助金额:
    $ 32.63万
  • 项目类别:
Regulation of translesion synthesis by the bacterial replisome
细菌复制体对跨损伤合成的调节
  • 批准号:
    9064813
  • 财政年份:
    2015
  • 资助金额:
    $ 32.63万
  • 项目类别:
Regulation of translesion synthesis by the bacterial replisome
细菌复制体对跨损伤合成的调节
  • 批准号:
    8858186
  • 财政年份:
    2015
  • 资助金额:
    $ 32.63万
  • 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
  • 批准号:
    10384889
  • 财政年份:
    2015
  • 资助金额:
    $ 32.63万
  • 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
  • 批准号:
    9885659
  • 财政年份:
    2015
  • 资助金额:
    $ 32.63万
  • 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
  • 批准号:
    8939212
  • 财政年份:
    2015
  • 资助金额:
    $ 32.63万
  • 项目类别:
Visualizing DNA break repair: single-molecule studies of non-homologous end joining
可视化 DNA 断裂修复:非同源末端连接的单分子研究
  • 批准号:
    10164800
  • 财政年份:
    2015
  • 资助金额:
    $ 32.63万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 32.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了