Noninvasive prediction of tumor response to gemcitabine using MRI

使用 MRI 无创预测肿瘤对吉西他滨的反应

基本信息

  • 批准号:
    9328948
  • 负责人:
  • 金额:
    $ 37.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-07 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

The prediction of tumor response to chemotherapy can be achieved by elucidating the efficiency of drug delivery to the targeted tumor cells, and the effectiveness of the delivered drug to be activated and act on tumor cells. A non-invasive means that can answer these questions is essential for designing efficient and personalized therapy, and is especially crucial to improve the efficacy of treating pancreatic ductal adenocarcinoma (PDAC), one of the most lethal human malignancies. In the present study, we propose to develop a highly translatable MRI technology to answer the two questions mentioned above in the gemcitabine treatment of PADC, and hence to predict tumor responses. In particular, Our approach is based on a so-called Chemical Exchange Saturation Transfer (CEST) MRI contrast mechanism, by which drugs are imaged directly by their inherently carried exchangeable protons (OH, NH or NH2), at a detectability comparable to that for Gd-based agents. Formulated on the basis of our preliminary results, we hypothesize that agents that contain cytosine and cytidine, for instance gemcitabine, can be detected using CEST MRI, namely cytCEST. We anticipate our approach can be used to predict tumor response to the gemcitabine treatment by assessing the accumulation, biodistribution and retention of the drug in the tumor, without the need for imaging tags or additional agents. To achieve our goal, we will first optimize and validate the cytCEST MRI detection of tumor uptake and biodistribution of gemcitabine. Then we will develop cytCEST MRI as an effective means to detect the activity of deoxycytidine kinase (dCK), one of the most important drug-resistance-related enzymes. Finally the potential of cytCEST MRI to predict the response of pancreatic tumors to therapy will be examined on the treatment in KPC genetically engineered mouse models using three different gemcitabine-based treatments. Successful completion of this project will result in an imaging tool for the prediction of tumor response to gemcitabine using the drug or its analog deoxycytidine directly as the imaging agent, namely label-free because no chemical-modification is needed. It is expected that such a label-free approach can be rapidly translated to the clinic, allowing clinicians to stratify patients prior to (or immediately after) the administration of gemcitabine or other cytosine- or cytidine-based chemotherapeutic drugs and to choose the personalized treatment plan for each group of patients.
肿瘤对化疗的反应可以通过阐明药物的有效性来实现预测 递送到靶向肿瘤细胞,以及递送的药物被激活并作用于肿瘤的有效性 细胞能够回答这些问题的非侵入性手段对于设计高效且 个性化治疗,尤其是提高治疗胰腺导管炎的疗效至关重要 腺癌(PDAC),最致命的人类恶性肿瘤之一。在本研究中,我们建议 开发一种高度可转换的MRI技术,以回答吉西他滨中上述两个问题 治疗PADC,从而预测肿瘤反应。特别是,我们的方法是基于所谓的 化学交换饱和转移(CEST)MRI对比机制,通过该机制直接对药物成像 通过其固有携带的可交换质子(OH、NH或NH2),可检测性与 基于GD的代理商根据我们的初步结果制定,我们假设, 胞嘧啶和胞苷,例如吉西他滨,可以使用CEST MRI,即cytCEST来检测。我们 预期我们的方法可用于通过评估吉西他滨治疗的肿瘤反应, 药物在肿瘤中的蓄积、生物分布和保留,而不需要成像标签, 额外的代理人。为了实现我们的目标,我们将首先优化和验证肿瘤的cytCEST MRI检测 吉西他滨的摄取和生物分布。然后我们将开发cytCEST MRI作为检测的有效手段 脱氧胞苷激酶(dCK)的活性,其是最重要的耐药相关酶之一。最后 将在上检查cytCEST MRI预测胰腺肿瘤对治疗反应的潜力 使用三种不同的基于吉西他滨的治疗在KPC基因工程小鼠模型中进行治疗。 该项目的成功完成将产生一种成像工具,用于预测肿瘤对 吉西他滨直接使用药物或其类似物脱氧胞苷作为显像剂,即无标记,因为 不需要化学改性。预计这种无标签方法可以迅速转化为 诊所,允许临床医生在吉西他滨给药之前(或之后立即)对患者进行分层 或其他基于胞嘧啶或胞嘧啶的化疗药物,并选择个性化的治疗计划, 每一组患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guanshu Liu其他文献

Guanshu Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guanshu Liu', 18)}}的其他基金

MPI/MRI bimodal imaging for non-invasive tracking of extracellular vesicles targeted to infarcted myocardium
MPI/MRI 双模成像,用于无创追踪梗塞心肌细胞外囊泡
  • 批准号:
    10557225
  • 财政年份:
    2022
  • 资助金额:
    $ 37.49万
  • 项目类别:
MPI/MRI bimodal imaging for non-invasive tracking of extracellular vesicles targeted to infarcted myocardium
MPI/MRI 双模成像,用于无创追踪梗塞心肌细胞外囊泡
  • 批准号:
    10366590
  • 财政年份:
    2022
  • 资助金额:
    $ 37.49万
  • 项目类别:
CEST MRI assessment of tumor vascular permeability using non-labeled dextrans
使用非标记葡聚糖评估肿瘤血管通透性的 CEST MRI
  • 批准号:
    9297917
  • 财政年份:
    2017
  • 资助金额:
    $ 37.49万
  • 项目类别:
Optimization of CEST MRI for detection of bacteria
用于细菌检测的 CEST MRI 优化
  • 批准号:
    9303352
  • 财政年份:
    2016
  • 资助金额:
    $ 37.49万
  • 项目类别:
Monitoring Prodrug Delivery in Suicide Gene Therapy Using CEST MRI
使用 CEST MRI 监测自杀基因治疗中的前药递送
  • 批准号:
    8510646
  • 财政年份:
    2012
  • 资助金额:
    $ 37.49万
  • 项目类别:
Monitoring Prodrug Delivery in Suicide Gene Therapy Using CEST MRI
使用 CEST MRI 监测自杀基因治疗中的前药递送
  • 批准号:
    8356569
  • 财政年份:
    2012
  • 资助金额:
    $ 37.49万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 37.49万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了