Factors that Enhance Diagnostic Imaging Safety in the Ambulatory Setting

提高门诊诊断成像安全性的因素

基本信息

  • 批准号:
    9322329
  • 负责人:
  • 金额:
    $ 32.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

A recent 15-year study of six large integrated health systems estimated 1.18 imaging tests per patient per year were performed in the United States, which amounts to an estimated 400 million imaging tests performed each year, at a cost of approximately $100 billion annually. Three quarters of these tests are performed in the ambulatory setting and although diagnostic imaging is predominantly non-invasive, it carries safety risks that could potentially harm patients. In addition, diagnostic errors are magnified when diagnostic imaging is utilized inappropriately and/or when there is no closed-loop system to monitor diagnostic follow-up. Thus, identifying contributing factors to diagnostic imaging failures in ambulatory care is of utmost importance. Cancer is one of the most common leading missed diagnoses in diagnostic litigation cases. Lung cancer is the leading cause of cancer deaths in the United States, followed by breast cancer in women. The most common suspicious abnormality for lung cancer on CT scan include lung nodules. Thus, standardized follow-up of lung nodules impacts early cancer detection, which provides the best chance for survival in lung cancer patients. Similarly, breast cancer screening is a mainstay of public health in the country with over 33 million women receiving mammograms each year. Recommendation for Breast Imaging Reporting and Data System (BIRADS) category 3 breast findings typically includes 6-month follow-up imaging. We therefore plan to assess suboptimal follow-up for patients with lung nodules and BIRADS category 3 breast findings. We propose a project that assesses diagnostic failures that are related to diagnostic imaging from two sources: (1) safety events related to all modalities of diagnostic imaging from an electronic safety reporting system, and (2) the institution's Patient Safety Net Initiative (PSNI), which combines Health Information Technology (HIT) and Care Coordination approaches for monitoring imaging follow-up. We focus on two specific aims to identify, characterize and evaluate contributing factors to diagnostic failures. These include (1) To measure the incidence of safety events that are related to diagnostic imaging from safety reports submitted to an electronic safety reporting system; and (2) To measure the incidence of suboptimal follow-up and comprehensively assess the impact of socio-technical factors on suboptimal diagnostic exam follow-up care in the ambulatory setting, specifically for two clinically significant findings with follow-up requirements: lung nodules and BIRADS category 3 breast findings. Diagnostic imaging in the ambulatory setting is influenced by socio-technical factors that contribute to performance of inappropriate exams as well as suboptimal follow-up care, all leading to diagnostic imaging failures. This study will identify these factors and assess their impact on diagnostic exam follow-up care in the ambulatory setting using the Patient Safety Net Initiative.
最近一项对六个大型综合卫生系统进行的15年研究估计,每年每位患者需要进行1.18次成像检查 在美国进行,这相当于估计每个人进行了4亿次成像测试。 年,每年耗资约1000亿美元。四分之三的测试是在 虽然诊断成像主要是非侵入性的,但它具有安全风险, 可能会对患者造成伤害。此外,当利用诊断成像时,诊断错误被放大 不适当地和/或当没有闭环系统来监测诊断随访时。因此,识别 门诊护理中诊断成像失败的促成因素至关重要。 癌症是诊断诉讼案件中最常见的主要漏诊之一。肺癌是 乳腺癌是美国癌症死亡的主要原因,其次是女性乳腺癌。最常见的 CT扫描上可疑肺癌异常包括肺结节。因此,肺的标准化随访 结节影响早期癌症检测,这为肺癌患者的生存提供了最佳机会。 同样,乳腺癌筛查是该国公共卫生的支柱,有3300多万妇女 每年接受乳房X光检查。乳腺成像报告和数据系统建议 (BIRADS)3类乳腺检查结果通常包括6个月随访成像。因此,我们计划评估 对于有肺结节和BIRADS 3类乳腺结果的患者,随访不理想。 我们提出了一个项目,从两个来源评估与诊断成像相关的诊断失败: (1)与电子安全报告系统的所有诊断成像模式相关的安全事件,以及 (2)该机构的病人安全网倡议(PSNI),它结合了健康信息技术(HIT) 和护理协调方法,用于监测成像随访。我们专注于两个具体目标,以确定, 描述和评估诊断失败的影响因素。其中包括:(1)测量 提交至电子安全性报告的与诊断成像相关的安全性事件发生率 安全性报告系统;(2)衡量次优随访的发生率, 评估社会技术因素对门诊次优诊断检查随访护理的影响 设置,特别是两个具有随访要求的临床显著结果:肺结节和BIRADS 第3类乳腺检查结果。 门诊的影像诊断受社会技术因素的影响, 进行不适当的检查以及次优的随访护理,所有这些都导致诊断性成像 失败这项研究将确定这些因素,并评估其对诊断检查随访护理的影响, 使用患者安全网倡议的门诊设置。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronilda Lacson其他文献

Ronilda Lacson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronilda Lacson', 18)}}的其他基金

Clinical Decision Support for Disseminating and Implementing Patient-Centered Outcomes Research (PCOR) Clinical Evidence
用于传播和实施以患者为中心的结果研究 (PCOR) 临床证据的临床决策支持
  • 批准号:
    10553545
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
Clinical Decision Support for Disseminating and Implementing Patient-Centered Outcomes Research (PCOR) Clinical Evidence
用于传播和实施以患者为中心的结果研究 (PCOR) 临床证据的临床决策支持
  • 批准号:
    10706516
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
Factors that Enhance Diagnostic Imaging Safety in the Ambulatory Setting
提高门诊诊断成像安全性的因素
  • 批准号:
    9927588
  • 财政年份:
    2016
  • 资助金额:
    $ 32.66万
  • 项目类别:
Automated Notification System for Follow-Up Testing Recommendations Across Care S
针对整个 Care S 的后续测试建议的自动通知系统
  • 批准号:
    8874900
  • 财政年份:
    2014
  • 资助金额:
    $ 32.66万
  • 项目类别:
Automated Notification System for Follow-Up Testing Recommendations Across Care S
针对整个 Care S 的后续测试建议的自动通知系统
  • 批准号:
    8772547
  • 财政年份:
    2014
  • 资助金额:
    $ 32.66万
  • 项目类别:
Deployment of Enhanced Critical Imaging Result Notification (DECIRN)
部署增强型关键成像结果通知 (DECIRN)
  • 批准号:
    8017886
  • 财政年份:
    2010
  • 资助金额:
    $ 32.66万
  • 项目类别:
Deployment of Enhanced Critical Imaging Result Notification (DECIRN)
部署增强型关键成像结果通知 (DECIRN)
  • 批准号:
    8144912
  • 财政年份:
    2010
  • 资助金额:
    $ 32.66万
  • 项目类别:

相似海外基金

Validation, Calibration, and Translation of Restriction Spectrum Imaging Signal Maps to enhance MRI diagnostic capabilities in Prostate Cancer
限制光谱成像信号图的验证、校准和转换,以增强前列腺癌的 MRI 诊断能力
  • 批准号:
    10639737
  • 财政年份:
    2023
  • 资助金额:
    $ 32.66万
  • 项目类别:
BowelSys: an AI tool to enhance FIT diagnostic yield and improve bowel cancer detection in symptomatic patients
BowelSys:一种人工智能工具,可提高 FIT 诊断率并改善有症状患者的肠癌检测
  • 批准号:
    10032117
  • 财政年份:
    2022
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Collaborative R&D
Developing a Framework to Study and Improve Communication to Enhance Diagnostic Quality in the ED
制定研究和改善沟通的框架,以提高急诊室的诊断质量
  • 批准号:
    10228295
  • 财政年份:
    2021
  • 资助金额:
    $ 32.66万
  • 项目类别:
Research on current use of sharing diagnostic imaging and video and integrating the new Google DICOM, a web-based medical imaging viewer to enhance Axon's Vetcare Technologies
研究当前使用共享诊断成像和视频以及集成新的 Google DICOM(基于网络的医学成像查看器)以增强 Axon 的 Vetcare 技术
  • 批准号:
    544641-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Application of a Machine Learning to Enhance e-Triggers to Detect and Learn from Diagnostic Safety Events
应用机器学习增强电子触发器以检测诊断安全事件并从中学习
  • 批准号:
    10018015
  • 财政年份:
    2019
  • 资助金额:
    $ 32.66万
  • 项目类别:
Application of a Machine Learning to Enhance e-Triggers to Detect and Learn from Diagnostic Safety Events
应用机器学习增强电子触发器以检测诊断安全事件并从中学习
  • 批准号:
    10254269
  • 财政年份:
    2019
  • 资助金额:
    $ 32.66万
  • 项目类别:
Engineering enzymes to enhance diagnostic devices for improved antibiotic stewardship
工程酶可增强诊断设备以改善抗生素管理
  • 批准号:
    2054129
  • 财政年份:
    2017
  • 资助金额:
    $ 32.66万
  • 项目类别:
    Studentship
Factors that Enhance Diagnostic Imaging Safety in the Ambulatory Setting
提高门诊诊断成像安全性的因素
  • 批准号:
    9927588
  • 财政年份:
    2016
  • 资助金额:
    $ 32.66万
  • 项目类别:
A Cognitive Approach to Refine and Enhance Use of a Dental Diagnostic Terminology
改进和增强牙科诊断术语使用的认知方法
  • 批准号:
    8125003
  • 财政年份:
    2010
  • 资助金额:
    $ 32.66万
  • 项目类别:
A Cognitive Approach to Refine and Enhance Use of a Dental Diagnostic Terminology
改进和增强牙科诊断术语使用的认知方法
  • 批准号:
    8704121
  • 财政年份:
    2010
  • 资助金额:
    $ 32.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了