Role of Mechanical Loading and Stem Cell Mechanotransduction in Tendon Degeneration

机械负荷和干细胞力转导在肌腱退变中的作用

基本信息

  • 批准号:
    9320001
  • 负责人:
  • 金额:
    $ 0.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2017-08-14
  • 项目状态:
    已结题

项目摘要

Abstract Tendinopathy is a progressive degenerative disease that accounts for 20-30% of all musculoskeletal disorders and results in impaired tendon function and persistent pain. A primary cause of tendon degeneration is overuse (i.e., fatigue loading), which produces repeated microscale mechanical damage leading to the breakdown of load-bearing collagen fibrils. Furthermore, tendon degeneration is characterized by the accumulation of atypical tissue components (e.g., cartilaginous, fat, and calcium deposits), which additionally requires the synthetic activity of cells with abnormal (i.e., non-tenogenic) phenotypes. Endogenous tendon stem cells (TSCs) have the capacity to differentiate into multiple cell types and are hypothesized to undergo non-tenogenic differentiation in response to fatigue loading. Indeed, elevated or prolonged in vitro stretching of isolated TSCs has been shown to promote non-tenogenic differentiation. However, it is unknown how TSC fate is regulated by the specific changes in the native tendon microenvironment observed with fatigue loading. First, the actual in situ strains that cells experience in fatigue-damaged tissue have not been measured. Second, prior studies have shown that mechanical stretch can activate all non-tenogenic pathways suggesting that additional biophysical inputs (e.g., tissue stiffness and organization) are required to direct TSC commitment to a specific lineage. Finally, the intracellular mechanotransduction mechanisms that modulate TSC differentiation in response to changes in their mechanical microenvironment are unknown. Identifying how mechanical stimuli alter TSC fate and lead to tendon degeneration will elucidate the underlying cause of tendinopathy and will inform the discovery of novel treatments to prevent or reverse the degenerative process. The objective of this proposal is to determine how non-tenogenic TSC differentiation is regulated by fatigue-induced changes in the tendon mechanical microenvironment and to identify the mechanotransduction mechanisms that mediate this response. Specifically, this work aims to 1) determine how in situ microscale tendon mechanics are altered with fatigue loading, 2) isolate the unique effects of aberrant mechanical stimuli on TSC differentiation, and 3) identify the key mechanotransduction mechanisms that mediate TSC differentiation. This will be accomplished by measuring the local strains, stiffness, and organization of the cellular microenvironment in fatigue-damaged tendon using an ex vivo tissue culture model. To identify how non-tenogenic TSC differentiation is mediated by altered mechanical stimuli separate from other influences within the TSC niche (e.g., soluble factors), we will stretch isolated TSCs on substrates with different stiffness and topographies that match the measured in situ biophysical inputs. Finally, we will use various inhibitors of cytoskeletal tension and intracellular signaling to investigate the mechanotransduction mechanisms that convert the altered mechanical stimuli to non-tenogenic TSC differentiation. The findings of this work will identify the mechanisms by which tendon overuse induces non- tenogenic TSC differentiation and leads to tendon degeneration. Furthermore, the ex vivo tendon fatigue model provides a platform to evaluate novel treatments aimed at preventing degeneration and restoring tissue properties. Finally, this research will provide the applicant with the necessary training to become a successful independent investigator.
摘要 肌腱病是一种进行性退行性疾病,占所有肌肉骨骼疾病的20 - 30 疾病并导致肌腱功能受损和持续疼痛。肌腱退化的主要原因 过度使用(即,疲劳载荷),其产生重复的微尺度机械损伤,导致 承重胶原纤维的断裂。此外,肌腱变性的特征在于 非典型组织成分的积累(例如,软骨、脂肪和钙沉积),另外 需要具有异常(即,非生腱)表型。内源性肌腱 干细胞(TSCs)具有分化成多种细胞类型的能力, 非tenogenic分化响应疲劳负荷。事实上,升高或延长的体外拉伸, 分离的TSC已显示促进非生腱分化。然而,TSC的命运如何, 是由与疲劳负荷观察到的天然肌腱微环境的特定变化。第一、 细胞在疲劳损伤的组织中经历的实际原位应变还没有被测量。第二、 先前的研究已经表明机械拉伸可以激活所有的非腱生成途径, 附加的生物物理输入(例如,组织硬度和组织),以指导TSC的承诺, 一个特定的血统。最后,调节TSC分化的细胞内机械转导机制 对机械微环境变化的反应是未知的。识别机械刺激如何 改变TSC命运并导致肌腱变性将阐明肌腱病的根本原因, 发现新的治疗方法来预防或逆转退化过程。 本提案的目的是确定非肌腱生成性TSC分化是如何 调节疲劳引起的肌腱力学微环境的变化,并确定 介导这种反应的机械转导机制。具体而言,这项工作的目的是1) 确定原位微观肌腱力学如何随着疲劳载荷而改变,2)分离出独特的 异常机械刺激对TSC分化的影响,以及3)确定关键的机械传导 调节TSC分化的机制。这将通过测量局部应变来实现, 刚度和组织的细胞微环境的疲劳损伤肌腱使用离体组织 文化模式确定机械刺激的改变如何介导非肌腱生成性TSC分化 与TSC利基内的其他影响(例如,可溶性因子),我们将拉伸分离的TSC 具有不同硬度和形貌的基底,其匹配所测量的原位生物物理输入。最后, 我们将使用各种细胞骨架张力和细胞内信号传导的抑制剂来研究 将改变的机械刺激转化为非生腱性TSC的机械转导机制 分化这项工作的结果将确定肌腱过度使用引起非- 肌腱生成性TSC分化并导致肌腱变性。此外,体外肌腱疲劳模型 提供了一个平台,以评估旨在防止退化和恢复组织的新治疗方法 特性.最后,这项研究将为申请人提供必要的培训,以成为一个成功的 独立调查员

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spencer Szczesny其他文献

Spencer Szczesny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spencer Szczesny', 18)}}的其他基金

Colocalization of gene expression and microscale tissue strains in live tendon explants using barcoded biosensors
使用条形码生物传感器对活体肌腱外植体中的基因表达和微型组织菌株进行共定位
  • 批准号:
    10558584
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
Colocalization of gene expression and microscale tissue strains in live tendon explants using barcoded biosensors
使用条形码生物传感器对活体肌腱外植体中的基因表达和微型组织菌株进行共定位
  • 批准号:
    10373315
  • 财政年份:
    2022
  • 资助金额:
    $ 0.96万
  • 项目类别:
Studying Mechanotransduction in Late Embryonic Development to Inform Tendon Tissue Engineering
研究胚胎发育晚期的力转导为肌腱组织工程提供信息
  • 批准号:
    9808374
  • 财政年份:
    2019
  • 资助金额:
    $ 0.96万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 0.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了