BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
基本信息
- 批准号:9623592
- 负责人:
- 金额:$ 42.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): This proposal will develop novel Bayesian approaches to handle missingness and conduct causal inference for important problems in biomedical research with particular relevance to cancer and behavioral studies. Missing data is a major problem in clinical studies. Of late, more e ort is spent to try to minimize the amount of missingness, but it remains a problem. We will address several pressing complications in the analysis of incomplete data in clinical settings as documented in a recent National Academies of Science report, including assessing model t to the observed data, developing Bayesian approaches for auxiliary covariates, and nonparametric modeling of nonignorable missingness. The mechanisms of treatment effectiveness are of particular interest in behavioral trials. Specifically, how do different processes mediate the effect of an intervention? This can facilitate
constructing future interventions. However, determining the causal effect of such 'mediators' on the outcomes is difficult. We will develop new approaches to identify these effects in complex settings with multiple mediators and longitudinal mediators for which little work has been done. Another important question is how to de ne and identify causal effects of interventions on outcomes in the setting of semi-competing risks. Semi-competing risks occur in studies where a progression endpoint may be pre-empted by death or censored due to loss to follow-up or study termination. Subjects who experience a progression event are also followed for survival, which may be censored. Data of this form has been termed semi-competing risks data. This paradigm is particularly relevant to certain brain cancer trials, where the semi-competing risks are death and cerebellar progression. For all these settings, a Bayesian approach is ideal as it allows one to appropriately characterize uncertainty about invariable assumptions (which are present in all these problems). The methods developed here will help answer numerous important clinical questions including the mechanisms of behavior change, both in weight management and smoking cessation, via the ability to appropriately assess mediation, and the joint causal effect of treatment on time to death and cerebellar progression in brain cancer. We will disseminate code for these methods (via the PI's webpage) to ensure the methods will be readily usable by investigators in their own studies. The history of the PI's collaboration with the PI's of the individual clinical studies and the statistician co- investigators will help the team produce the best science and facilitate dissemination of our clinical findings and new methods to the appropriate audience via both subject matter publications and presentations at relevant conferences.
描述(由申请人提供):这项建议将开发新的贝叶斯方法来处理遗漏,并对生物医学研究中与癌症和行为研究特别相关的重要问题进行因果推断。数据缺失是临床研究中的一个主要问题。最近,人们花了更多的时间试图将遗漏的数量降到最低,但这仍然是一个问题。我们将解决临床环境中不完全数据分析中的几个紧迫的复杂问题,如最近美国国家科学院的一份报告所述,包括对观察数据的模型t进行评估,为辅助协变量开发贝叶斯方法,以及对不可忽略的缺失进行非参数建模。治疗效果的机制在行为试验中特别令人感兴趣。具体地说,不同的过程如何调节干预的效果?这可以促进
构建未来的干预措施。然而,很难确定这些“调解人”对结果的因果影响。我们将制定新的办法,在有多个调解人和几乎没有做过什么工作的纵向调解人的复杂情况下确定这些影响。另一个重要的问题是,在设定半竞争性风险的情况下,如何确定干预措施对结果的因果影响。半竞争性风险发生在研究中,如果进展终点可能因死亡而先发制人,或因失去随访或研究终止而被审查。经历进展事件的受试者也会被跟踪以求生存,这可能会被审查。这种形式的数据被称为半竞争性风险数据。这一模式与某些脑癌试验特别相关,在这些试验中,死亡和小脑进展是半竞争性的风险。对于所有这些设置,贝叶斯方法是理想的,因为它允许人们适当地表征关于不变假设的不确定性(这些假设存在于所有这些问题中)。这里开发的方法将有助于回答许多重要的临床问题,包括体重管理和戒烟方面的行为变化机制,通过适当评估调解的能力,以及治疗对脑癌死亡时间和小脑进展的联合因果影响。我们将(通过PI的网页)发布这些方法的代码,以确保这些方法可供研究人员在自己的研究中随时使用。PI与个别临床研究的PI和统计学家联合调查员合作的历史将帮助团队产生最好的科学,并通过主题出版物和在相关会议上的演示将我们的临床结果和新方法传播给适当的受众。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael J Daniels其他文献
An Exploration of Fixed and Random Effects Selection for Longitu- Dinal Binary Outcomes in the Presence of Non-ignorable Dropout 3.2 Variable Selection in Missing Data Mechanism 4 Simulation Studies
不可忽略丢失情况下纵向二元结果的固定和随机效应选择的探索 3.2 缺失数据机制中的变量选择 4 模拟研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ning Li;Michael J Daniels;Gang Li;R. Elashoff - 通讯作者:
R. Elashoff
Effects of an Intervention to Increase Bed Alarm Use to Prevent Falls in Hospitalized Patients
增加床报警器使用以预防住院患者跌倒的干预措施的效果
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:39.2
- 作者:
R. Shorr;A. Chandler;L. Mion;T. Waters;Minzhao Liu;Michael J Daniels;L. Kessler;Stephen T. Miller - 通讯作者:
Stephen T. Miller
Dietary assessment and estimation of intakedensitiesMichael
膳食评估和摄入密度估计Michael
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Michael J Daniels;A. Carriquiry - 通讯作者:
A. Carriquiry
Michael J Daniels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael J Daniels', 18)}}的其他基金
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
$ 42.58万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10618846 - 财政年份:2021
- 资助金额:
$ 42.58万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10279399 - 财政年份:2021
- 资助金额:
$ 42.58万 - 项目类别:
Combining longitudinal cohort studies to examine cardiovascular risk factor trajectories across the adult lifespan and their association with disease
结合纵向队列研究来检查成人寿命期间的心血管危险因素轨迹及其与疾病的关联
- 批准号:
10430254 - 财政年份:2021
- 资助金额:
$ 42.58万 - 项目类别:
BAYESIAN APPROACHES FOR MISSINGNESS AND CAUSALITY IN CANCER AND BEHAVIOR STUDIES
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9437722 - 财政年份:2018
- 资助金额:
$ 42.58万 - 项目类别:
PREDOCTORAL TRAINING IN BIOMEDICAL BIG DATA SCIENCE
生物医学大数据科学博士前培训
- 批准号:
9116413 - 财政年份:2016
- 资助金额:
$ 42.58万 - 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
8672913 - 财政年份:2014
- 资助金额:
$ 42.58万 - 项目类别:
Bayesian approaches for missingness and causality in cancer and behavior studies
癌症和行为研究中缺失和因果关系的贝叶斯方法
- 批准号:
9041551 - 财政年份:2014
- 资助金额:
$ 42.58万 - 项目类别:
RESOURCE CORE 3: BIOSTATISTICS AND DATA MANAGEMENT CORE
资源核心 3:生物统计学和数据管理核心
- 批准号:
8206035 - 财政年份:2007
- 资助金额:
$ 42.58万 - 项目类别:
COVARIANCE ESTIMATION FOR LONGITUDINAL CANCER DATA
纵向癌症数据的协方差估计
- 批准号:
6288245 - 财政年份:2001
- 资助金额:
$ 42.58万 - 项目类别:
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 42.58万 - 项目类别:
Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 42.58万 - 项目类别:
Studentship
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
EU-Funded
NEM-EMERGE: An integrated set of novel approaches to counter the emergence and proliferation of invasive and virulent soil-borne nematodes
NEM-EMERGE:一套综合的新方法来对抗入侵性和剧毒土传线虫的出现和扩散
- 批准号:
10080598 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
EU-Funded
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
- 批准号:
AH/Z000084/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Research Grant
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
- 批准号:
EP/Y032640/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Fellowship
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
$ 42.58万 - 项目类别:
Standard Grant














{{item.name}}会员




