Interpretable Deep Learning Model for Longitudinal Electronic Health Records and Applications to Heart Failure Prediction
用于纵向电子健康记录的可解释深度学习模型及其在心力衰竭预测中的应用
基本信息
- 批准号:9544376
- 负责人:
- 金额:$ 75.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-13 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdmission activityAlgorithmsAttentionBiological Neural NetworksCaringClassificationClinicalCodeComplexComputer softwareCost of IllnessDataDecision TreesDetectionDiagnosisDiagnosticDimensionsDisease ProgressionE-learningEarly DiagnosisElectronic Health RecordEventFutureHealthHealth systemHealthcareHeart failureHospitalsImageImageryIndividualInfluentialsInpatientsInstitutionIntuitionLearningLogistic RegressionsMeasuresMedicalMethodsMissionModelingNatural Language ProcessingNeural Network SimulationOutcomeOutputPatient riskPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPhasePlayProceduresRecordsRecurrenceResearchRiskRisk FactorsSigns and SymptomsSoftware ToolsStructureSystemTimeTranslatingWorkbaseclinical careclinical riskhealth applicationhigh dimensionalityimprovedindividual patientinterestinteroperabilitylearning strategymortalityparallel computerpatient stratificationprediction algorithmpredictive modelingrelating to nervous systemsuccess
项目摘要
PROJECT SUMMARY
Heart failure (HF) is a highly disabling and costly disease with a high mortality rate. In the prediagnostic phase
(i.e., 1236 months before diagnosis), HF is difficult to detect given the insidious signs and symptoms. After
diagnosis, where it is not possible to reverse disease progression, efforts are made to avoid hospital admission
and readmission, but with limited capabilities to stratify patients by risk. We propose to develop interpretable
deep learning models applied to largescale electronic health record (EHR) data to detect HF related events on
two different time scales. One set of models will be developed to detect HF diagnosis one to two years before
actual documented diagnosis. Separately, we propose to identify HF patients who are at risk of hospital
admission and readmission . The project focuses on developing deep learning models that offer the potential for
greater accuracy, clinical interpretability, and utility than alternatives. The expected deliverables include
comprehensive software for creating deep learning algorithms that predict HF outcomes and related software
tools for model visualization.
项目总结:
心力衰竭(HF)是一种高度致残的疾病,也是一种代价高昂的疾病,具有极高的死亡率。目前处于诊断前阶段。
(即在确诊前12-36个月),考虑到潜在的心脏症状和症状,心衰很难被检测出来。
在诊断不可能逆转疾病进展的情况下,我们会尽最大努力避免住院。
以及重新入院,但治疗能力有限的患者可以根据风险对患者进行分层。我们将提出建议,以制定一种可解释的解决方案。
深度学习模型已应用于大规模医疗电子健康记录系统(EHR)的数据采集,以快速检测与心脏出血热相关的健康事件。
两个不同的时间尺度。将不会开发一套新的模型,以在一到两年前检测心力衰竭的诊断。
实际记录的是他的诊断。另外,我们将提出一种方法,以帮助识别那些面临医院风险风险的心衰患者。
录取和再录取。该项目的重点是开发更深入的学习模式,为学生提供更大的潜在机会。
与其他替代方案相比,更高的准确性、更好的临床可解释性、更高的实用性和更高的可交付性。
用于创建能够预测心力衰竭结果的深度学习算法的全面的医疗软件以及相关的医疗软件。
工具为模型和可视化提供了支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly elevated polygenic risk scores are better predictors of myocardial infarction risk early in life than later.
- DOI:10.1186/s13073-021-00828-8
- 发表时间:2021-01-28
- 期刊:
- 影响因子:12.3
- 作者:Isgut M;Sun J;Quyyumi AA;Gibson G
- 通讯作者:Gibson G
GRAM: Graph-based Attention Model for Healthcare Representation Learning.
- DOI:10.1145/3097983.3098126
- 发表时间:2017-08
- 期刊:
- 影响因子:0
- 作者:Choi E;Bahadori MT;Song L;Stewart WF;Sun J
- 通讯作者:Sun J
DDL: Deep Dictionary Learning for Predictive Phenotyping.
- DOI:10.24963/ijcai.2019/812
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Fu T;Hoang TN;Xiao C;Sun J
- 通讯作者:Sun J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chao Zhang其他文献
Public Expression of Vulnerable Communities: Grassroots NGOs’ Policy Advocacy Actions and Strategies
弱势群体的公开表达:草根非政府组织的政策倡导行动和策略
- DOI:
10.1163/18765149-12341349 - 发表时间:
2018-12 - 期刊:
- 影响因子:1
- 作者:
Chao Zhang - 通讯作者:
Chao Zhang
Chao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chao Zhang', 18)}}的其他基金
CO-CRYSTAL STRUCTURES OF LIPID KINASES WITH SMALL MOLECULE INHIBITORS
脂质激酶与小分子抑制剂的共晶结构
- 批准号:
8362276 - 财政年份:2011
- 资助金额:
$ 75.61万 - 项目类别:
CO-CRYSTAL STRUCTURES OF LIPID KINASES WITH SMALL MOLECULE INHIBITORS
脂质激酶与小分子抑制剂的共晶结构
- 批准号:
8170277 - 财政年份:2010
- 资助金额:
$ 75.61万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 75.61万 - 项目类别:
Research Grant














{{item.name}}会员




