Bioactive, "Self-fitting" Shape Memory Polymer (SMP) Scaffolds to Treat Cranial Bone Defects
生物活性“自贴合”形状记忆聚合物 (SMP) 支架可治疗颅骨缺损
基本信息
- 批准号:9240216
- 负责人:
- 金额:$ 38.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllograftingAnimal ModelAnimalsAreaAutologousAutologous TransplantationBehaviorBiocompatible MaterialsBiodegradationBiomechanicsBody TemperatureBone MarrowBone RegenerationBone SubstitutesBone TissueBone TransplantationCalvariaCell AdhesionCell Differentiation processCell SeparationCellsCephalicClinicalComplicationDefectDepositionDevelopmentDiffusionEngineeringEthersEvaluationExposure toExtracellular MatrixFormulationFutureGoalsGoldHA coatingHarvestHistologicHistologyHumanHybridsHydroxyapatitesImmunohistochemistryImplantIn VitroInfiltrationInvestigationLeadMarrowMelissaMemoryMesenchymalMesenchymal Stem CellsModelingModulusMolecular WeightMorbidity - disease rateNatureNutrientOperative Surgical ProceduresOsseointegrationOsteoblastsOsteogenesisPlastic SurgeonPolymersPorosityPositioning AttributeProceduresPropertyRattusResearchSalineShapesSiliconSiteStem cellsSurfaceTestingThickTissue EngineeringTissuesWorkbasebiomaterial compatibilitybonebone cellbone healingcaprolactonecell motilitycraniofacialcrosslinkdensitydesignhealingin vivoinnovationmechanical behaviormechanical propertiesmembermicroCTmineralizationnanoscaleosteogenicpolydimethylsiloxaneregenerativerepairedscaffoldtissue regeneration
项目摘要
ABSTRACT
Our research goal is the development of a bioactive, “self-fitting” shape memory polymer (SMP)
scaffold to repair confined cranial defects by associated bone marrow-derived mesenchymal stem
cells (BMSCs). Autografts are associated with lengthy harvesting procedures, donor site morbidity as well as
difficulties in shaping and positioning the graft into the defect. Tissue engineering is a promising alternative but
requires a currently unmet need - a biomaterial scaffold which simultaneously provides: (1) the ability to
conformally fit into an irregular defect to enhance osseointegration, (2) bioactivity, (3) osteoinductivity
and (4) highly interconnected pores and controlled biodegradability necessary for cell migration, nutrient
diffusion and neotissue accumulation while avoiding brittle mechanical properties. The significance and
innovation of this approach is a new “self-fitting”, polydopamine-coated SMP scaffold design that achieves all
of these properties. Developed by the PI, the proposed hybrid SMP scaffolds are comprised of an organic
segment [poly(ε-caprolactone), PCL] and an inorganic silicon-containing segment [polydimethylsiloxane,
PDMS or poly(silyl ether), PSE]. The scaffold design meets key functional requirements: (1) Osseo-
integration: The SMP scaffold will be “self-fitting” as a result of its shape memory behavior, enabling
conformal fitting into an irregular defect by brief exposure to warm saline and locking of the new temporary
shape upon cooling to body temperature. (2) Bioactivity and (3) Osteoinductivity: A nanothick, bioactive
polydopamine coating will be applied to the SMP scaffold pore surfaces to support progenitor cell osteogenesis
as well the formation of hydroxyapatite necessary for osseointegration. (4) Interconnected Pores, Controlled
Biodegradability, and Robust Mechanical Properties: The SMP scaffold fabrication strategy enables high
porosities and pore interconnectivity while avoiding brittle mechanical behavior. The rate of scaffold
biodegradation will be controlled by inorganic segment type (i.e. PDMS or PSE) and molecular weight (Mn) (i.e.
crosslink density). The healing potential of SMP scaffolds will be evaluated in a critical size-rat calvarial model
using histological testing, micro-CT and biomechanical testing.
The team is comprised of experts in all key areas of the proposed work. Prof. Melissa Grunlan (PI) will
lead efforts to prepare polydopamine-coated SMP scaffolds and uncoated controls (Aims 1-3). Prof. Mariah
Hahn (Co-I) will lead in vitro tissue engineering studies with rat- and human-BMSCs incorporated into the
scaffolds (Aim 2). Prof. Brian Saunders (Co-I) will implant cell-laden scaffolds into rat calvarial defects (Aim
3). Prof. Michael Moreno will lead efforts to study biomechanical properties of scaffolds, native tissues and
bone-graft constructs (Aims 1-3). Healing will be evaluated by histology/immunohistochemistry (Prof. Roy
Pool and Saunders, Co-Is), micro-CT (Saunders) and biomechanical tests (Moreno). Input will be provided by
two craniofacial plastic surgeons, Drs. Raymond Harshbarger and Kevin Hopkins (consultants).
摘要
我们的研究目标是开发一种具有生物活性的“自适应”形状记忆聚合物(SMP)
骨髓间充质干细胞联合支架修复局限性颅骨缺损
细胞(BMSCs)。自体移植物与长时间的收获程序、供体部位发病率以及
难以将移植物塑形和定位到缺损中。组织工程是一种有前途的选择,
需要一种目前未满足的需要-一种生物材料支架,其同时提供:(1)能够
保形地适合不规则缺损以增强骨整合,(2)生物活性,(3)骨诱导性
和(4)高度互连的孔和细胞迁移所必需的受控的生物降解性,
扩散和新组织积累,同时避免脆性机械性能。的意义和
这种方法的创新是一种新的“自适应”,聚多巴胺涂层SMP支架设计,
这些财产。由PI开发,建议的混合SMP支架由有机
链段[聚(ε-己内酯),PCL]和无机含硅链段[聚二甲基硅氧烷,
PDMS或聚(甲硅烷基醚),PSE]。脚手架设计满足关键功能要求:(1)奥塞奥-
整合:由于其形状记忆行为,SMP支架将是“自适应的”,
通过短暂暴露于温盐水并锁定新的临时性假体,
在冷却到体温时成形。(2)生物活性和(3)骨诱导性:一种纳米细针,生物活性
将聚多巴胺涂层应用于SMP支架孔表面以支持祖细胞成骨
以及骨整合所必需的羟基磷灰石的形成。(4)互连孔,受控
生物可降解性和稳健的机械性能:SMP支架制造策略能够实现高
孔隙率和孔隙互连性,同时避免脆性机械行为。支架率
生物降解将由无机链段类型(即PDMS或PSE)和分子量(Mn)(即,
交联密度)。SMP支架的愈合潜力将在一个临界大小的大鼠颅骨模型中进行评估
使用组织学测试、显微CT和生物力学测试。
该小组由拟议工作所有关键领域的专家组成。Melissa Grunlan教授(PI)将
致力于制备聚多巴胺涂层SMP支架和未涂层对照(目标1-3)。Mariah教授
Hahn(Co-I)将领导体外组织工程研究,将大鼠和人BMSC纳入组织工程。
支架(目标2)。Brian Saunders教授(Co-I)将在大鼠颅骨缺损处植入细胞负载支架(Aim
(3)第三章。Michael Moreno教授将致力于研究支架,天然组织和
骨移植结构(目标1-3)。将通过组织学/免疫组织化学评价愈合(Roy教授
Pool和Saunders,Co-Is)、微型CT(Saunders)和生物力学测试(Moreno)。输入将由
两名颅面整形外科医生,雷蒙德·哈什巴格和凯文·霍普金斯(顾问)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Grunlan其他文献
Melissa Grunlan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Grunlan', 18)}}的其他基金
Improving Outcomes in Cataract Surgery: Intraocular Lenses (IOLs) Resistant to Cell Growth
改善白内障手术的效果:抗细胞生长的人工晶状体 (IOL)
- 批准号:
10841859 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Improving Outcomes in Cataract Surgery: Intraocular Lenses (IOLs) Resistant to Cell Growth
改善白内障手术的效果:抗细胞生长的人工晶状体 (IOL)
- 批准号:
10573497 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Shape Memory Polymer Scaffolds to Treat Bone Defects in Patients with Alzheimer's Disease
形状记忆聚合物支架治疗阿尔茨海默病患者的骨缺损
- 批准号:
10442203 - 财政年份:2020
- 资助金额:
$ 38.8万 - 项目类别:
Shape Memory Polymer Scaffolds to Treat Bone Defects in Patients with Alzheimer's Disease
形状记忆聚合物支架治疗阿尔茨海默病患者的骨缺损
- 批准号:
10263155 - 财政年份:2020
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8803977 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8440044 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
Hybrid Inorganic-Organic Hydrogel Scaffolds for Osteochondral Regeneration
用于骨软骨再生的混合无机-有机水凝胶支架
- 批准号:
8285559 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
Hybrid Inorganic-Organic Hydrogel Scaffolds for Osteochondral Regeneration
用于骨软骨再生的混合无机-有机水凝胶支架
- 批准号:
8449051 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8918591 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8554303 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
相似海外基金
Establishment of novel osteochondral allografting combined with growth factor- collagen-binding domain fusion technology
新型同种异体骨软骨移植联合生长因子-胶原蛋白结合域融合技术的建立
- 批准号:
26462277 - 财政年份:2014
- 资助金额:
$ 38.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Translating PTH Therapy as an Adjuvant for Structural Allografting
将 PTH 疗法转化为结构性同种异体移植的佐剂
- 批准号:
8344380 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
Composite Allografting for Promoting Survival of Corneal Transplants
复合同种异体移植促进角膜移植的存活
- 批准号:
7878675 - 财政年份:2009
- 资助金额:
$ 38.8万 - 项目类别:
Composite Allografting for Promoting Survival of Corneal Transplants
复合同种异体移植促进角膜移植的存活
- 批准号:
7677758 - 财政年份:2009
- 资助金额:
$ 38.8万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
7466112 - 财政年份:2008
- 资助金额:
$ 38.8万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
8010394 - 财政年份:2008
- 资助金额:
$ 38.8万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
8208131 - 财政年份:2008
- 资助金额:
$ 38.8万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
7575273 - 财政年份:2008
- 资助金额:
$ 38.8万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
7765518 - 财政年份:2008
- 资助金额:
$ 38.8万 - 项目类别: