DESIPHER_Speech Degradation as an Indicator of Physiological Degeneration in ALS

DESIPHER_言语退化作为 ALS 生理退化的指标

基本信息

  • 批准号:
    9217408
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): In 2008, Amyotrophic lateral sclerosis (ALS) or Lou Gehrig's Disease became a presumptively compensable (service connected) disease as the Institute of Medicine (IOM) Committee stated an association between the development of ALS and military service. According to the IOM report, military service increases life risk of ALS by 1.5 fold. There are approximately 4,200 Veterans with ALS and roughly 1,000 new cases each year. At the Tampa VA, since 2007, there has been a consistent rise in the number of Veterans diagnosed and treated with ALS. Most physiological assessments that are commonly used to determine the functional status of patients with ALS require trained clinical personnel to administer and interpret the results. We propose to use automatic speech understanding and machine learning software (DESIPHER) to: identify speech pathologies and use them to predict other aspects of physiological degeneration associated with ALS (e.g., respiratory difficulty or inability to swallow), and ultimately improve speech recognition for those with speech impairments. We expect this to improve our ability to appropriately identify and intervene when Veterans with ALS are at risk of serious adverse medical issues such as respiratory failure and aspiration. We postulate that analyzing the overall divergence of (impaired) speech, from a "normal" baseline, will prove to be more robust and a better marker for involvement than others that have been proposed. Specific research questions to be addressed by this study are: (1) Is it possible to train a speech recognition system to adapt to increasingly more frequent language/speech errors of particular types, to produce an accurate textual transcript that would be readable by an ALS patient's caregiver or physician? (2) Are specific changes in physiological functioning; Forced Vital Capacity, tongue strength, speech velocity, weight (loss), aspiration risk, or psychological distress, reflected in different types of language/speech errors associated with ALS? By understanding how speech functioning correlates with the degree to which other biophysical functioning has degraded, it is possible to apply a new, non-invasive measure for assessing the functionality of an ALS patient. In addition, the features associated with speech degradation it is possible to adapt existing speech recognition software to a patient's speech as it evolves over time, so that the quality of life for patients may be improved through conversation with a computer. Respiratory failure is the main cause of morbidity and mortality in ALS patients. We expect that the method of analyzing speech will present an excellent biomarker for respiratory function, as there is an expected increase in pauses during speech due to the necessity of increase frequency of respirations, a decrease in loudness, and decreased overall velocity of speech. A second major cause of death is aspiration. As the articular muscles decline, we expect to note a decrease in the clarity of speech. Speech involvement often precedes swallowing involvement; thus, we expect that increasing speech divergence will indicate potential aspiration risk.
 描述(由申请人提供): 2008年,肌萎缩性侧索硬化症(ALS)或卢伽雷氏病成为一种假定可补偿(服务相关)的疾病,因为医学研究所(IOM)委员会指出ALS的发展与兵役之间的联系。根据IOM的报告,服兵役使ALS的生命风险增加了1.5倍。每年大约有4,200名退伍军人患有ALS,大约有1,000例新病例。在坦帕退伍军人管理局,自2007年以来,被诊断和治疗ALS的退伍军人人数持续上升。通常用于确定ALS患者功能状态的大多数生理评估需要训练有素的临床人员来管理和解释结果。我们建议使用自动语音理解和机器学习软件(AMPHER)来:识别语音病理,并使用它们来预测与ALS相关的生理退化的其他方面(例如,呼吸困难或无法吞咽),并最终提高那些有语言障碍的人的语言识别能力。我们希望这能提高我们的能力,适当地识别和干预时,退伍军人与ALS是在严重的不良医疗问题,如呼吸衰竭和吸入的风险。我们假设,分析的整体分歧(受损)的语音,从“正常”的基线,将被证明是更强大的,更好的标记参与比其他人已经提出。本研究要解决的具体研究问题是:(1)是否有可能训练语音识别系统,以适应日益频繁的语言/语音错误的特定类型,产生一个准确的文本转录,将可读的ALS患者的护理人员或医生?(2)生理功能的特定变化;用力肺活量,舌强度,语速,体重(损失),吸入风险或心理困扰,反映在与ALS相关的不同类型的语言/言语错误中?通过了解语言功能如何与其他生物物理功能退化的程度相关,可以应用一种新的非侵入性措施来评估ALS患者的功能。此外,与语音退化相关的特征是 可以使现有的语音识别软件适应患者的语音,因为它随着时间的推移而演变,使得患者的生活质量可以通过与计算机的对话来改善。呼吸衰竭是ALS患者发病和死亡的主要原因。我们期望分析语音的方法将呈现用于呼吸功能的极好的生物标志物,因为由于呼吸频率增加的必要性、响度降低和语音的总体速度降低,在语音期间存在预期的停顿增加。第二大死因是误吸。随着关节肌肉的衰退,我们预计会注意到言语清晰度的下降。言语受累通常先于吞咽受累;因此,我们预计言语分化的增加将表明潜在的误吸风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam L. Phillips其他文献

Evaluation of a new assistive technology: the StandBar
评估新型辅助技术:StandBar
  • DOI:
    10.1080/17483107.2022.2115565
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blake Barrett;Sam L. Phillips;Tatjana Bulat;Jason D Lind;Lisa M Ballistrea;Anita Ramrattan;Yvonne Friedman;Linda Cowan
  • 通讯作者:
    Linda Cowan
Endpoint Control for a Powered Shoulder Prosthesis
动力肩假体的端点控制
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sam L. Phillips;L. Resnik;C. Fantini;Gail A. Latlief
  • 通讯作者:
    Gail A. Latlief
A Review of Clinical Outcome Assessment Instruments for Gait, Balance, and Fall Risk in Persons With Lower Extremity Amputation
下肢截肢患者步态、平衡和跌倒风险的临床结果评估工具综述
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Hart;Gail A. Latlief;Sam L. Phillips;Shirley Groer;M. J. Highsmith
  • 通讯作者:
    M. J. Highsmith
Patient safety in the rehabilitation of the adult with an amputation.
成人截肢康复中的患者安全。

Sam L. Phillips的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了