Harnessing T-junction filtering; bidirectional control of sensory neuron impulse traffic
利用 T 形接头过滤;
基本信息
- 批准号:9419475
- 负责人:
- 金额:$ 47.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAction PotentialsAcute PainAfferent NeuronsAnatomyAnimal Disease ModelsAnimalsAxonBehavioralBrain imagingClinicalComplementControl AnimalDataDegenerative polyarthritisDiseaseElectrophysiology (science)EsthesiaFDA approvedFemaleFoundationsFunctional Magnetic Resonance ImagingGangliaGenerationsGoalsIn VitroInflammationInflammatoryInflammatory ArthritisJointsMeasuresMechanoreceptorsMembraneModalityModelingMolecularNeuraxisNeurogenic InflammationNeuronsNeuropathyNeurostimulation procedures of spinal cord tissueNociceptorsOpticsOrganPainPain managementPathway interactionsPeripheralPeripheral NervesPeripheral Nervous SystemPharmacologyPhysiologicalPopulationPreparationProcessProductionPropertyRattusReflex actionRegulationRheumatoid ArthritisRoleSensorySignal TransductionSpinal GangliaSystemTestingTherapeuticTissuesTrainingbehavior testcalmodulin-dependent protein kinase IIchronic painclinical applicationdesigner receptors exclusively activated by designer drugsdorsal columndorsal hornexperimental studyin vivomaleneuronal cell bodyneuroregulationnoveloptogeneticspreferencepreventreceptive fieldsensory systemspinal nerve posterior roottransmission process
项目摘要
Sensory neurons naturally adapt to ongoing stimulation, but harnessing this inherent plasticity for therapeutic
purposes has not been explored. The recent clinical observation that dorsal root ganglion field stimulation (GFS)
blocks pain, provides a clue that an unrecognized process regulates conduction of impulses through the DRG
since exactly the opposite, i.e. production of pain, would be expected. The paradoxical phenomenon of GFS
analgesia indicates that our current understanding of peripheral neuron signal transmission is fundamentally
insufficient, and that a novel, clinically applicable modality of use-dependent neuronal manipulation awaits
discovery. That is the goal of this proposal. Sensory neurons also convey retrograde impulses from the dorsal
horn to peripheral tissues, where they trigger inflammation and tissue damage, for instance in rheumatoid
arthritis. We will therefore explore bidirectional GFS modulation of both afferent and efferent signal transmission
through the DRG. In three Aims, we will test the overall hypothesis that GFS, by triggering action potentials (APs)
in the somata of sensory neurons, reduces the intrinsic excitability of their T-junction, which reduces bidirectional
propagation of APs through the DRG, and can thereby produce analgesia and block neurogenic inflammation.
In Aim 1, we will first develop a rat model in order to lay the groundwork for mechanistic exploration. GFS
analgesia will be tested in the setting of neuropathy, and osteoarthritis. To test GFS blockade of retrograde
impulses, we will identify GFS effects on joint changes in a model of rheumatoid arthritis. For these experiments,
examination will be by behavioral tests and functional magnetic resonance imaging (fMRI) of the brain, examining
both male and female rats. In Aim 2, to identify the exact neuronal targets of GFS, we will test GFS activation of
sensory neuron somata, and determine which DRG neuronal subtypes are modulated by GFS and at which
component (axon vs. soma) this takes place. Aim 3 will employ electrophysiological approaches to directly
measure the effects of GFS on functional properties of DRG neurons, in order to identify the mechanism of GFS
impulse regulation. Additionally, we will explore the role of CaMKII, and we will compare GFS effects between
the various sensory neuron subpopulations.
Together, our proposed experiments will establish a mechanistic foundation for a novel regulatory process that
governs impulse train transmission in the peripheral nervous system. As molecular and electrical
neuromodulatory therapies move forward in the clinical setting, understanding this new regulatory node will have
direct translational utility for harnessing an inherent impulse regulating system and applying it to control sensory
and peripheral inflammatory disorders.
感觉神经元自然地适应持续的刺激,但利用这种固有的可塑性进行治疗
目的尚未探讨。背根神经节场刺激(GFS)的最新临床观察
阻止疼痛,提供了一个线索,表明一个未被识别的过程通过 DRG 调节冲动的传导
因为预期会发生完全相反的情况,即产生疼痛。 GFS的悖论现象
镇痛表明我们目前对周围神经元信号传递的理解从根本上来说是
不足,并且等待一种新颖的、临床适用的依赖于使用的神经元操作方式
发现。这就是本提案的目标。感觉神经元还传递来自背侧的逆行冲动
角向周围组织,引发炎症和组织损伤,例如类风湿病
关节炎。因此,我们将探索传入和传出信号传输的双向 GFS 调制
通过 DRG。在三个目标中,我们将通过触发动作电位(AP)来测试 GFS 的总体假设
在感觉神经元的体细胞中,降低其 T 形接头的内在兴奋性,从而降低双向性
AP 通过 DRG 传播,从而产生镇痛并阻断神经源性炎症。
在目标1中,我们将首先开发大鼠模型,为机制探索奠定基础。政府财政司司长
将在神经病和骨关节炎的情况下测试镇痛效果。测试 GFS 逆行阻断
脉冲,我们将确定 GFS 对类风湿关节炎模型关节变化的影响。对于这些实验,
检查将通过行为测试和大脑功能磁共振成像(fMRI)进行,检查
雄性和雌性大鼠。在目标 2 中,为了确定 GFS 的确切神经元目标,我们将测试 GFS 激活
感觉神经元体细胞,并确定哪些 DRG 神经元亚型受 GFS 调节,以及哪些 DRG 神经元亚型受 GFS 调节
组件(轴突与体细胞)发生这种情况。目标 3 将采用电生理学方法直接
测量 GFS 对 DRG 神经元功能特性的影响,以确定 GFS 的机制
冲动调节。此外,我们将探讨 CaMKII 的作用,并将比较 GFS 的效果
各种感觉神经元亚群。
总之,我们提出的实验将为新颖的监管过程奠定机械基础,
控制周围神经系统的脉冲序列传输。作为分子和电
神经调节疗法在临床环境中取得进展,了解这个新的调节节点将有
直接转化效用,用于利用固有的脉冲调节系统并将其应用于控制感官
和外周炎症性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quinn H Hogan其他文献
Quinn H Hogan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quinn H Hogan', 18)}}的其他基金
Primary sensory neuron-targeted block of Cav3.2 for treatment of chronic neuropathic pain
初级感觉神经元靶向的 Cav3.2 阻断治疗慢性神经性疼痛
- 批准号:
10438951 - 财政年份:2021
- 资助金额:
$ 47.1万 - 项目类别:
Primary sensory neuron-targeted block of Cav3.2 for treatment of chronic neuropathic pain
初级感觉神经元靶向的 Cav3.2 阻断治疗慢性神经性疼痛
- 批准号:
10452646 - 财政年份:2021
- 资助金额:
$ 47.1万 - 项目类别:
Harnessing T-junction filtering; bidirectional control of sensory neuron impulse traffic
利用 T 形接头过滤;
- 批准号:
10200908 - 财政年份:2017
- 资助金额:
$ 47.1万 - 项目类别:
Persisting functional CNS changes following peripheral nerve repair
周围神经修复后中枢神经系统功能持续变化
- 批准号:
9031926 - 财政年份:2016
- 资助金额:
$ 47.1万 - 项目类别:
Persisting functional CNS changes following peripheral nerve repair
周围神经修复后中枢神经系统功能持续变化
- 批准号:
9198176 - 财政年份:2016
- 资助金额:
$ 47.1万 - 项目类别:
AAV-encoded analgesic peptide aptamers for chronic pain
AAV编码的镇痛肽适体治疗慢性疼痛
- 批准号:
9079673 - 财政年份:2016
- 资助金额:
$ 47.1万 - 项目类别:
Cannabinoid Signaling in the dPAG: Specific Analgesic and Autonomic Functions
dPAG 中的大麻素信号传导:特定的镇痛和自主功能
- 批准号:
8625117 - 财政年份:2013
- 资助金额:
$ 47.1万 - 项目类别:
Cannabinoid Signaling in the dPAG: Specific Analgesic and Autonomic Functions
dPAG 中的大麻素信号传导:特定的镇痛和自主功能
- 批准号:
8762234 - 财政年份:2013
- 资助金额:
$ 47.1万 - 项目类别:
Cannabinoid Signaling in the dPAG: Specific Analgesic and Autonomic Functions
dPAG 中的大麻素信号传导:特定的镇痛和自主功能
- 批准号:
8966633 - 财政年份:2013
- 资助金额:
$ 47.1万 - 项目类别:
DRG engraftment of transduced mesenchymal stem cells to treat neuropathic pain
转导间充质干细胞的 DRG 植入治疗神经性疼痛
- 批准号:
8847814 - 财政年份:2012
- 资助金额:
$ 47.1万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 47.1万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 47.1万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 47.1万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 47.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 47.1万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 47.1万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 47.1万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 47.1万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 47.1万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 47.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




