A Novel System for Reducing Radiation Dose of CT Perfusion
降低CT灌注辐射剂量的新型系统
基本信息
- 批准号:9548355
- 负责人:
- 金额:$ 4.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAnatomyAngiographyBackBolus InfusionBrainCerebrovascular DisordersClinicalComputer softwareDataDecision MakingDetectionDiagnosisDoseElectromagneticsEnsureEvaluationFutureGoalsHeadHealthHeartHigh-LET RadiationImageImaging TechniquesImpairmentIndustryIndustry StandardInfarctionLocationMagnetic Resonance ImagingMalignant NeoplasmsMedicalMedical ImagingModernizationMonitorNoiseOrganPathway interactionsPatientsPatternPerformancePerfusionPhasePhysiologic pulsePositioning AttributeProtocols documentationPublic HealthRadiationRadiation exposureReperfusion TherapyRoentgen RaysRotationSamplingScanningSeriesSliceSmall Business Technology Transfer ResearchSocietiesSourceSpecific qualifier valueSpeedStrokeSystemTechniquesTechnologyTestingTimeTomography, Computed, ScannersTubeVendorX-Ray Computed Tomographyacute strokebrain tissuecommercializationcontrast imagingflexibilityhemodynamicsimage reconstructionimaging platformimaging systeminnovationischemic lesionlow-dose spiral CTnew technologynovelperfusion imagingportabilityprototyperadiation effectreconstructiontemporal measurementvoltage
项目摘要
Project Summary/Abstract
X-ray computed tomography (CT) has been increasingly used in medical diagnosis, currently reaching more
than 80 million CT scans every year in the US. The increasing use of CT has sparked concern over the effects
of radiation dose on patients. It is estimated that every 2000 CT scans will cause one future cancer, i.e.,
40,000 cases of future cancers from 80 million CT scans every year. CT brain perfusion (CTP) is a widely used
imaging technique for the evaluation of hemodynamic changes in stroke and cerebrovascular disorders.
However, CTP involves high radiation dose for patients as the CTP scan is repeated on the order of 40 times
at the same anatomical location, in order to capture the full passage of the contrast bolus. This has been
raised as a major concern by the FDA, especially when multiple successive CTPs are performed on the same
patient, e.g. to monitor reperfusion following recanalization. Several techniques have been applied for radiation
dose reduction in CTP scans, including reduction of tube current and tube voltage, as well as the use of novel
noise reduction techniques such as iterative reconstruction (IR). However, the resultant radiation dose of
existing CTP scans is still significantly higher than that of a standard head CT scan. The application of IR
techniques in CTP is very limited due to the high complexity and computational burden for processing multiple
CTP images that may impair clinical workflow. The overarching goal of the present STTR project is to develop
and commercialize a novel CT imaging platform that reduces the radiation dose of existing CTP techniques by
~75% without compromising imaging speed or quality. This proprietary technology reduces the radiation dose
of CTP scans by controlling the X-ray source to be on intermittently (instead of continuously) at pre-specified
rotation angles (i.e., programmed pulsed X-ray). The dynamic CTP image series can then be reconstructed
using algorithms that preserve high spatial and temporal resolutions as well as image quality comparable to
those of standard CTP scans. During the proposed Phase 1 project, we plan to demonstrate a proof-of-concept
of our technology by further developing, optimizing and evaluating the image reconstruction algorithm using
both phantom and clinical CTP data. We will also collaborate with CT vendors to ensure the developed
technology has a realistic pathway to commercialization.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danny JJ WANG其他文献
Danny JJ WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danny JJ WANG', 18)}}的其他基金
Massively parallel high-speed 3D functional photoacoustic computed tomography of the adult human brain
成人大脑的大规模并行高速 3D 功能光声计算机断层扫描
- 批准号:
10685975 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别:
Massively parallel high-speed 3D functional photoacoustic computed tomography of the adult human brain
成人大脑的大规模并行高速 3D 功能光声计算机断层扫描
- 批准号:
10007184 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别:
Massively parallel high-speed 3D functional photoacoustic computed tomography of the adult human brain
成人大脑的大规模并行高速 3D 功能光声计算机断层扫描
- 批准号:
10470400 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别:
Massively parallel high-speed 3D functional photoacoustic computed tomography of the adult human brain
成人大脑的大规模并行高速 3D 功能光声计算机断层扫描
- 批准号:
10256763 - 财政年份:2020
- 资助金额:
$ 4.2万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant