Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
基本信息
- 批准号:9325457
- 负责人:
- 金额:$ 16.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-12 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcysteineAftercareAntiestrogen TherapyAntioxidantsApoptosisBiological MarkersBreast Cancer CellCancer CenterCarcinomaCatabolismCell Culture TechniquesCell LineCell modelCellsClinicalClinical ResearchClinical TrialsClinical Trials DesignCoculture TechniquesCore FacilityCoupledCouplingDevelopment PlansDrug ModelingsDrug TargetingDrug resistanceEducational workshopEnrollmentEnsureEpigallocatechin GallateEpithelialEpithelial CellsEstrogen AntagonistsEstrogen receptor positiveFibroblastsFoundationsFulvestrantGene ExpressionGene Expression ProfilingGenerationsGenesGlycolysisGoalsHumanImmunohistochemistryIn VitroKnowledgeLaboratoriesLaboratory ResearchLeadLeadershipLearningLinkMCF7 cellMalignant Epithelial CellMalignant NeoplasmsMeasurementMeasuresMentorsMentorshipMetabolicMetabolismMitochondriaModelingMolecular Biology TechniquesNCI-Designated Cancer CenterNuclearOxidative PhosphorylationOxidative StressPathway interactionsPatientsPharmaceutical PreparationsPhysiciansProgression-Free SurvivalsProteinsPublic HealthReactive Oxygen SpeciesRecurrenceRecurrent diseaseRefractoryRefractory DiseaseRelapseResearchResearch PersonnelResistanceRespirationRisk FactorsRoleScientistSelective Estrogen Receptor ModulatorsSignal PathwaySignal TransductionStaining methodStainsStromal CellsSubgroupT47DTamoxifenTestingTissuesUp-RegulationWorkXenograft Modelbasecancer cellcareercareer developmentcaveolin 1cell growthcohortdesigndrug developmentdrug testingfollow-upgenetically modified cellsglucose uptakeimprovedmalignant breast neoplasmmeetingsmitochondrial metabolismmortalityoverexpressionpredictive markerpredictive signatureprogramsprotein expressionpublic health relevanceskillstreatment strategytumortumor metabolismtumor microenvironmentuncoupling protein 1uptake
项目摘要
DESCRIPTION (provided by applicant): My long term career goal is to become an independent physician scientist who focuses on drug resistance in breast cancer and combines laboratory based mechanistic research and clinical trial design and implementation. My current efforts are devoted to studying how to overcome antiestrogen resistance by modulating epithelial stromal metabolic interactions in breast cancer utilizing molecular biology techniques. My mentor Dr. Richard Pestell has expertise in breast cancer metabolism and the tumor microenvironment. My co-mentor Dr. Scott Waldman has expertise in clinical trial design and implementation. The Kimmel Cancer Center where I work is an NCI designated Cancer Center with a well-established and vibrant research program and multiple core facilities that will allow me to carry out this proposal. A career development plan based on experimental work in Dr. Pestell's lab, twice weekly interactions with Dr. Pestell, and weekly with Dr. Waldman as well as mentorship committee meetings every two months and participation in workshops and seminars is being implemented to learn technical and leadership skills. Relapsed or refractory cancer after antiestrogen therapy defines antiestrogen resistance clinically and this is a major public health issue. Antiestrogen resistance occurs in 40% of ER+ patients and it is most often fatal. We lack good biomarkers and treatments for antiestrogen resistance. It has recently been discovered that metabolic coupling with high mitochondrial metabolism in epithelial cells with low metabolism in the stroma is associated with antiestrogen resistance. We have recently demonstrated that a tumor stroma with increased reactive oxygen species (ROS), low oxidative phosphorylation metabolism (OXPHOS) and high glycolysis is found in aggressive breast cancers. This type of stromal metabolism leads to metabolic coupling and transfer of high energy catabolites to the epithelial cancer cells and is associated with antiestrogen resistance. My overall hypothesis is that metabolic coupling drives antiestrogen resistance and reversal of epithelial-stromal metabolic coupling will overcome antiestrogen resistance in breast cancer. The project aims are: i) To test the hypothesis that OXPHOS metabolic coupling is sufficient to induce antiestrogen resistance in breast cancer. I will use an in vitro stromal-epithelial cell model of estrogen receptor positive (ER+) breast cancer. I will genetically modify cells in order to generate tight epithelial-stromal metabolic coupling with epithelial cancer cells with high OXPHOS metabolism via upregulation of monocarboxylate transporter 1 (MCT1), nuclear respiration factor 1 (NRF1) and mitoNEET and stromal cells with low OXPHOS metabolism and high catabolism via upregulation of monocarboxylate transporter 4 (MCT4) and uncoupling protein 1 (UCP1) to determine if changes in the metabolism of the epithelial or stromal compartment are sufficient to increase antiestrogen resistance. These cell lines that I generate will be cultured with either fibroblasts or ER+ carcinoma cells. Antiestrogen resistance will be measured by quantifying apoptosis and proliferation of the breast cancer cells after treatment with tamoxifen and fulvestrant. We will also determine if these cell lines induce antiestrogen resistance using xenograft models. ii) To test the hypothesis that expression of genes linked to OXPHOS metabolic coupling are associated with antiestrogen resistance in a cohort of patients. I will stain a human tumor microarray (TMA) of patients with ER+ breast cancer treated with tamoxifen for the proteins listed in aim 1. I will correlate the expression of these proteins by immunohistochemistry (IHC) in the stromal and epithelial compartments with progression free survival (PFS). We will also perform gene expression profiling (GEP) of the carcinoma cells that I generate to determine if we can generate a signature that predicts antiestrogen resistance. iii)
To test the hypothesis that drugs that modulate OXPHOS, glycolysis or reactive oxygen species will overcome antiestrogen resistance. I will use our epithelial-stromal coculture models of antiestrogen resistant breast cancer, including the genetically modified cells generated for aim 1 to determine if drugs that metabolically uncouple epithelial and stromal cells can overcome antiestrogen resistance. Specifically, I will test drugs that increase or decrease OXPHOS, inhibit glycolysis or inhibit oxidative stress to determine their effects on carcinoma cell growth. I will also study the functional effects of these drugs in vitro by studying glucose uptake, mitochondrial activity and ROS measurement to ensure expected effects. I will also study the effects of the antioxidant n-acetylcysteine (NAC) on OXPHOS metabolic coupling in humans. Subjects with breast cancer are being enrolled in a pilot clinical trial with NAC where cancer tissue is obtained pre-NAC and post-NAC treatment. The effects of NAC on stromal Caveolin-1 (Cav-1) and MCT4 expression will be studied by IHC. This study and career development plan will allow me to gain the skills to become an independent investigator and the research will discover mechanisms of antiestrogen drug resistance, develop biomarkers and lay the foundations for drug development. I hope to become a physician scientist who links the laboratory and clinical research aspects to improve the lives of patients with breast cancer.
描述(由申请人提供):我的长期职业目标是成为一名独立的内科科学家,专注于乳腺癌耐药研究,并结合实验室机制研究和临床试验设计与实施。我目前致力于研究如何利用分子生物学技术通过调节乳腺癌上皮间质代谢相互作用来克服抗雌激素抵抗。我的导师Richard Pestell博士在乳腺癌代谢和肿瘤微环境方面有专长。我的共同导师斯科特·沃尔德曼博士在临床试验设计和实施方面有专长。我工作的Kimmel癌症中心是NCI指定的癌症中心,拥有完善且充满活力的研究项目和多个核心设施,将允许我执行此提案。职业发展计划基于在Pestell博士实验室的实验工作,每周两次与Pestell博士交流,每周与Waldman博士交流,每两个月召开一次指导委员会会议,并参加研讨会和研讨会,以学习技术和领导技能。抗雌激素治疗后复发或难治性癌症在临床上定义为抗雌激素抵抗,这是一个主要的公共卫生问题。抗雌激素抵抗发生在40%的ER+患者中,并且通常是致命的。我们缺乏抗雌激素抵抗的良好生物标志物和治疗方法。近年来研究发现,上皮细胞代谢高而基质代谢低的代谢偶联与抗雌激素抵抗有关。我们最近证明,在侵袭性乳腺癌中发现了一种具有活性氧(ROS)增加、氧化磷酸化代谢(OXPHOS)低和糖酵解高的肿瘤基质。这种类型的基质代谢导致代谢偶联和高能量分解代谢物转移到上皮癌细胞,并与抗雌激素抵抗有关。我的总体假设是代谢偶联驱动抗雌激素抵抗,而逆转上皮-基质代谢偶联将克服乳腺癌的抗雌激素抵抗。本项目的目的是:i)验证OXPHOS代谢偶联足以诱导乳腺癌抗雌激素抵抗的假设。我将使用雌激素受体阳性(ER+)乳腺癌的体外基质上皮细胞模型。我将通过基因修饰细胞,通过上调单羧酸转运蛋白1 (MCT1),与OXPHOS高代谢的上皮癌细胞产生紧密的上皮-基质代谢偶联。通过上调单羧酸转运蛋白4 (MCT4)和解偶联蛋白1 (UCP1),研究核呼吸因子1 (NRF1)和mitoNEET以及低氧phos代谢和高分解代谢的基质细胞,以确定上皮或基质室代谢的变化是否足以增加抗雌激素抵抗。我生成的这些细胞系将与成纤维细胞或ER+癌细胞一起培养。我们将通过量化他莫昔芬和氟维司汀治疗后乳腺癌细胞的凋亡和增殖来测量抗雌激素抵抗。我们还将使用异种移植模型确定这些细胞系是否诱导抗雌激素抗性。ii)在一组患者中验证与OXPHOS代谢偶联相关的基因表达与抗雌激素抵抗相关的假设。我将对接受他莫昔芬治疗的ER+乳腺癌患者的人类肿瘤微阵列(TMA)进行染色,以检测目标1中列出的蛋白质。我将通过免疫组织化学(IHC)将这些蛋白在基质和上皮间室中的表达与无进展生存(PFS)联系起来。我们还将对我生成的癌细胞进行基因表达谱分析(GEP),以确定我们是否可以生成预测抗雌激素耐药性的特征。3)
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease.
- DOI:10.18632/oncotarget.3174
- 发表时间:2015-03-10
- 期刊:
- 影响因子:0
- 作者:Lamb R;Ozsvari B;Lisanti CL;Tanowitz HB;Howell A;Martinez-Outschoorn UE;Sotgia F;Lisanti MP
- 通讯作者:Lisanti MP
MCT1 in Invasive Ductal Carcinoma: Monocarboxylate Metabolism and Aggressive Breast Cancer.
- DOI:10.3389/fcell.2017.00027
- 发表时间:2017
- 期刊:
- 影响因子:5.5
- 作者:Johnson JM;Cotzia P;Fratamico R;Mikkilineni L;Chen J;Colombo D;Mollaee M;Whitaker-Menezes D;Domingo-Vidal M;Lin Z;Zhan T;Tuluc M;Palazzo J;Birbe RC;Martinez-Outschoorn UE
- 通讯作者:Martinez-Outschoorn UE
Cancer stem cell metabolism.
- DOI:10.1186/s13058-016-0712-6
- 发表时间:2016-05-24
- 期刊:
- 影响因子:0
- 作者:Peiris-Pagès M;Martinez-Outschoorn UE;Pestell RG;Sotgia F;Lisanti MP
- 通讯作者:Lisanti MP
Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells.
- DOI:10.18632/oncotarget.9122
- 发表时间:2016-06-07
- 期刊:
- 影响因子:0
- 作者:Fiorillo M;Lamb R;Tanowitz HB;Mutti L;Krstic-Demonacos M;Cappello AR;Martinez-Outschoorn UE;Sotgia F;Lisanti MP
- 通讯作者:Lisanti MP
Targeting tumor-initiating cells: eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction.
- DOI:10.18632/oncotarget.3278
- 发表时间:2015-03-10
- 期刊:
- 影响因子:0
- 作者:Lamb R;Harrison H;Smith DL;Townsend PA;Jackson T;Ozsvari B;Martinez-Outschoorn UE;Pestell RG;Howell A;Lisanti MP;Sotgia F
- 通讯作者:Sotgia F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ubaldo Martinez Outschoorn其他文献
Ubaldo Martinez Outschoorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ubaldo Martinez Outschoorn', 18)}}的其他基金
Lactate as a Driver of Inflammation and Virulence in SARS-Coronavirus Infections
乳酸作为 SARS 冠状病毒感染中炎症和毒力的驱动因素
- 批准号:
10252304 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Tumor Microenvironment Metabolism in Invasive Ductal Carcinoma of the Breast
乳腺癌浸润性导管癌的肿瘤微环境代谢
- 批准号:
10300432 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Tumor Microenvironment Metabolism in Invasive Ductal Carcinoma of the Breast
乳腺癌浸润性导管癌的肿瘤微环境代谢
- 批准号:
10530580 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Tumor Microenvironment Metabolism in Invasive Ductal Carcinoma of the Breast
乳腺癌浸润性导管癌的肿瘤微环境代谢
- 批准号:
9887834 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
- 批准号:
8635096 - 财政年份:2013
- 资助金额:
$ 16.46万 - 项目类别:
Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
- 批准号:
9128565 - 财政年份:2013
- 资助金额:
$ 16.46万 - 项目类别:
Metabolic mechanisms of antiestrogen resistance in breast cancer
乳腺癌抗雌激素抵抗的代谢机制
- 批准号:
8733633 - 财政年份:2013
- 资助金额:
$ 16.46万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 16.46万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 16.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 16.46万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 16.46万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 16.46万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 16.46万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 16.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 16.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 16.46万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 16.46万 - 项目类别: