Integration and Visualization of Diverse Biological Data
多种生物数据的整合与可视化
基本信息
- 批准号:9266422
- 负责人:
- 金额:$ 44.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-04-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAnimal ModelAreaBioinformaticsBiologicalBiological ProcessCardiovascular DiseasesCase StudyCell LineageChronic Kidney FailureClinicalCollaborationsComplexComputer SystemsComputing MethodologiesDataData AnalysesData SetDevelopmentDiseaseDrug TargetingExpert SystemsFeedbackFunctional disorderFundingGene Expression RegulationGenerationsGenesGenetic DatabasesGenetic studyGoalsGoldHereditary DiseaseHumanHypertensionImageryKidney GlomerulusKnowledgeLabelLaboratoriesLearningLettersLinkMachine LearningMethodologyMethodsModelingMolecularNephrologyNetwork-basedParkinson DiseasePathway interactionsQuantitative GeneticsReal-Time SystemsResearchResearch PersonnelScientistSignal TransductionSubstantia nigra structureSupervisionSystemSystems IntegrationTimeTissuesTrainingUbiquitinationUpdateWorkautism spectrum disorderbaseclinical investigationdata integrationdata visualizationdiagnostic biomarkerdrug developmentdrug discoveryexperimental studyfunctional genomicsgene discoverygenome wide association studygenome-widegenomic datahuman diseaseimprovedinnovationinsightinterestmultitasknovelnovel therapeuticspublic health relevancetargeted treatmenttherapy developmentuser-friendlyweb interfaceweb-accessible
项目摘要
DESCRIPTION (provided by applicant): The onset of most human disease involves multiple, molecular-level changes to the complex system of interacting genes and pathways that function differently in specific cell-lineage, pathway and treatment contexts. While this system has been probed by the thousands of functional genomics and quantitative genetic studies, careful extraction of signals relevant to these specific contexts is a challenging problem. General integration of these heterogeneous data was an important first step in detecting signals that be used to build networks to generate experimentally-testable hypotheses. However, only by dealing with the fact that disease happens at the intersection of multiple contexts and by integrating functional genomics with quantitative genetics will we be able to move toward a molecular-level understanding of human pathophysiology, which will pave the way to new therapy and drug development. The long-term goal of this project is to enable such discoveries through the development of innovative bioinformatics frameworks for integrative analysis of diverse functional genomic data. In the previous funding periods, we developed accurate data integration and visualization methodologies for most common model organisms and human, created methods for tissue-specific data analysis, and applied these methods to make novel insights about important biological processes. We further enabled experimental biological discovery by implementing these methods in publicly accessible interactive systems that are popular with experimental biologists. Leveraging our prior work, we now will directly address the challenge of enabling data-driven study of molecular mechanisms underlying human disease by developing novel semi-supervised and multi-task machine learning approaches and implementing them in a real-time integration system capable of predicting genome-scale functional and mechanism-specific networks focused on any biological context of interest. This will allow any biomedical researcher to quickly make data-driven hypotheses about function, interactions, and regulation of genes involved in hypertension in the kidney glomerulus or to predict new regulatory interactions relevant to Parkinson's disease that affect the ubiquitination pathway in Substantia nigra. Furthermore, we will develop methods for disease gene discovery that leverage these highly specific networks for functional analysis of quantitative genetics data.
Our deliverable will be a general, robust, user-friendly, and automatically updated system for user-driven functional genomic data integration and functional analysis of quantitative genetics data. Throughout this work, we (with our close experimental and clinical collaborators) will also apply our methods to chronic kidney disease, cardiovascular disease/hypertension, and autism spectrum disorders both as case studies for the iterative improvement of our methods and to make direct contribution to better understanding of these diseases.
描述(由申请人提供):大多数人类疾病的发作涉及相互作用基因和途径的复杂系统的多种分子水平变化,这些基因和途径在特定细胞谱系、途径和治疗背景下发挥不同的功能。虽然这个系统已经被成千上万的功能基因组学和定量遗传学研究所探索,但仔细提取与这些特定背景相关的信号是一个具有挑战性的问题。这些异质数据的一般整合是检测信号的重要第一步,这些信号可用于构建网络以生成可实验验证的假设。然而,只有通过处理疾病发生在多种背景交叉点的事实,并将功能基因组学与定量遗传学相结合,我们才能对人类病理生理学进行分子水平的理解,这将为新疗法和药物开发铺平道路。 该项目的长期目标是通过开发创新的生物信息学框架,对各种功能基因组数据进行综合分析,从而实现这些发现。在之前的资助期间,我们为最常见的模型生物和人类开发了准确的数据集成和可视化方法,创建了组织特异性数据分析方法,并应用这些方法对重要的生物过程进行了新的见解。我们进一步使实验生物学的发现,通过实施这些方法在公共访问的交互式系统,是流行的实验生物学家。 利用我们以前的工作,我们现在将通过开发新的半监督和多任务机器学习方法,并在能够预测基因组规模的功能和机制的实时集成系统中实现它们,直接解决对人类疾病潜在分子机制进行数据驱动研究的挑战。这将允许任何生物医学研究人员快速做出关于肾小球高血压相关基因的功能,相互作用和调控的数据驱动假设,或预测与帕金森病相关的影响黑质泛素化途径的新的调控相互作用。此外,我们将开发疾病基因发现的方法,利用这些高度特异性的网络进行定量遗传学数据的功能分析。
我们的交付将是一个通用的,强大的,用户友好的,自动更新的系统,用于用户驱动的功能基因组数据集成和定量遗传学数据的功能分析。在这项工作中,我们(与我们密切的实验和临床合作者)还将我们的方法应用于慢性肾脏疾病,心血管疾病/高血压和自闭症谱系障碍,作为我们方法迭代改进的案例研究,并为更好地理解这些疾病做出直接贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OLGA G TROYANSKAYA其他文献
OLGA G TROYANSKAYA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OLGA G TROYANSKAYA', 18)}}的其他基金
Context-Sensitive Search of Human Expression Compendia
人类表达概要的上下文相关搜索
- 批准号:
8290295 - 财政年份:2011
- 资助金额:
$ 44.53万 - 项目类别:
Context-Sensitive Search of Human Expression Compendia
人类表达概要的上下文相关搜索
- 批准号:
8024978 - 财政年份:2011
- 资助金额:
$ 44.53万 - 项目类别:
Context-Sensitive Search of Human Expression Compendia
人类表达概要的上下文相关搜索
- 批准号:
8464761 - 财政年份:2011
- 资助金额:
$ 44.53万 - 项目类别:
lntegration and Visualization of Diverse Biological Data
多种生物数据的整合和可视化
- 批准号:
10393642 - 财政年份:2005
- 资助金额:
$ 44.53万 - 项目类别:
Integration and Visualization of Diverse Biological Data
多种生物数据的整合与可视化
- 批准号:
7036576 - 财政年份:2005
- 资助金额:
$ 44.53万 - 项目类别:
Integration and visualization of diverse biological data
多种生物数据的整合和可视化
- 批准号:
8041717 - 财政年份:2005
- 资助金额:
$ 44.53万 - 项目类别:
Integration and visualization of diverse biological data
多种生物数据的整合和可视化
- 批准号:
8209212 - 财政年份:2005
- 资助金额:
$ 44.53万 - 项目类别:
Integration and Visualization of Diverse Biological Data
多种生物数据的整合与可视化
- 批准号:
7404447 - 财政年份:2005
- 资助金额:
$ 44.53万 - 项目类别:
Integration and visualization of diverse biological data
多种生物数据的整合和可视化
- 批准号:
8601095 - 财政年份:2005
- 资助金额:
$ 44.53万 - 项目类别:
lntegration and Visualization of Diverse Biological Data
多种生物数据的整合和可视化
- 批准号:
9902503 - 财政年份:2005
- 资助金额:
$ 44.53万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 44.53万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 44.53万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 44.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 44.53万 - 项目类别:
Studentship














{{item.name}}会员




