Integrating CNV analysis into a NextGen sequencing clinical analytics platform

将 CNV 分析集成到 NextGen 测序临床分析平台中

基本信息

  • 批准号:
    9408437
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2018-03-14
  • 项目状态:
    已结题

项目摘要

Copy Number Variations (CNVs) are a common cause of disease in humans. As of today, CNVs are most often detected using microarrays. However, microarrays are expensive and are not able to effectively detect CNVs below 1K bp range. This project is designed to detect both point mutations and CNVs in one clinical test without having to utilize microarrays. It is our goal to develop an easy to use solution that allows clinicians and researchers to conduct this type of advanced analysis without requiring bioinformatics and scripting skills. The resulting benefits include:  Cost savings: By eliminating the need for additional microarray tests, labs will be able to streamline their analytics workflows utilizing NextGen Sequencing (NGS) data.  Clinical yield: The proposed solution will be able to detect smaller CNV events in the sub 1K bp range that remain undetected by microarrays. This is crucial for clinicians as they are evaluating a genome for diagnostic purposes.  Ease of Use: The proposed solution will be embedded in the Golden Helix VarSeq product that is designed to enable complex analytics workflows without the need to script or program. The simplification of advanced workflows such as the CNV analysis is crucial as precision medicine is becoming more and more mainstream. The simplicity of the solution will also streamline the training of healthcare professionals who are entering into this field. For our purpose, we may define CNVs as any deletion or insertion of DNA with respect to the human reference sequence of size ≥ 50 bps. Deletions and insertions shorter than 50 bp are common, but in general can be detected through routine variant calling algorithms used in the analysis of NGS data. CNVs may range in size up to several megabases. We are equally interested in detecting CNVs that are tens of kilobases or greater in size, as we are keen to extend the detection range as large as possible. CNV detection from NGS data is currently a key topic in human genetics. Different solutions from mostly research oriented groups have been developed. We will build upon the best of the solutions that have been described to date and make them commercially available. Most current solutions use models that are only capable of incorporating a single evidence metric. Our approach to CNV detection will instead make use of a probabilistic model capable of incorporating multiple evidence metrics derived from a collection of reference samples. This is a key improvement that differentiates our approach from existing methods described in the literature. Also, this work will lead to more advanced capabilities such as the detection of loss of heterozygosity (LOH), copy-neutral LOH and uniparental disomy (UPD) events.
拷贝数变异(CNV)是人类疾病的常见原因。到今天为止,CNV最常见的是 使用微阵列检测。然而,微阵列是昂贵的,并且不能有效地检测CNVs 低于1K bp范围。该项目旨在在一次临床试验中检测点突变和CNV, 必须使用微阵列。我们的目标是开发一种易于使用的解决方案, 研究人员进行这种类型的高级分析,而不需要生物信息学和脚本技能。的 由此产生的好处包括: 成本节约:通过消除对额外微阵列测试的需求,实验室将能够简化其 利用NextGen测序(NGS)数据的分析工作流程。 临床产量:所提出的解决方案将能够检测低于1K bp范围内的较小CNV事件 而这些都是微阵列无法检测到的。这对临床医生来说至关重要,因为他们正在评估基因组, 诊断目的。 易于用途:建议的解决方案将嵌入Golden Hacking VarSeq产品中, 旨在实现复杂的分析工作流,而无需编写脚本或编程。简化 先进的工作流程,如CNV分析是至关重要的,因为精准医疗越来越多, 更主流。该解决方案的简单性还将简化医疗保健培训 正在进入该领域的专业人士。 为了我们的目的,我们可以将CNV定义为相对于人参照的任何DNA缺失或插入 长度≥ 50 bps的序列。短于50 bp的缺失和插入是常见的,但一般来说, 通过NGS数据分析中使用的常规变异识别算法检测。CNV的大小可能在 高达几兆字节。我们同样感兴趣的是检测CNV,它们是数十个或更多的DNA片段, 尺寸,因为我们热衷于尽可能大地扩展检测范围。 从NGS数据中检测CNV是目前人类遗传学中的一个关键课题。不同的解决方案,大多 发展了以研究为导向的小组。我们将在现有最佳解决方案的基础上再接再厉, 迄今为止所描述的并使其商业化。大多数当前的解决方案使用的模型仅 能够合并单一证据度量。我们的CNV检测方法将使用 能够合并从参考集合导出的多个证据度量的概率模型 样品这是一个关键的改进,它将我们的方法与 文学此外,这项工作将导致更先进的能力,如检测杂合性丢失 (LOH)、拷贝中性洛缺失和单亲二体性(UPD)事件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Scherer其他文献

Andreas Scherer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Scherer', 18)}}的其他基金

Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
  • 批准号:
    10819933
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Automated and Guided Workflows for Clinical Testing Using NGS Assays
使用 NGS 检测进行临床测试的自动化和引导式工作流程
  • 批准号:
    9894817
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了