Platform for High-Throughput Analysis of Integrated Cancer Imaging and Multi-Omics Data
综合癌症成像和多组学数据高通量分析平台
基本信息
- 批准号:9568920
- 负责人:
- 金额:$ 22.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-11 至 2018-06-10
- 项目状态:已结题
- 来源:
- 关键词:BioinformaticsBiologicalBiologyBiometryCatalogsClassificationCommunitiesComplexComputer softwareComputersControlled VocabularyCorrelation StudiesDataData AnalysesData SetData SourcesData Storage and RetrievalDetectionDimensionsDocumentationEnsureFeedbackGene ChipsGlioblastomaGoalsGraphImageIndividualIngestionMalignant NeoplasmsMeasurementMedical ImagingMetadataMethodsModelingMolecularOntologyPathway interactionsPhasePhenotypeProcessProteomeProteomicsProtocols documentationQuality ControlReportingResearchRetrievalSamplingSliceSoftware EngineeringSourceStructureSystemSystems AnalysisTechniquesTechnologyTestingThe Cancer Genome AtlasVocabularybasecancer imagingdata formatdata integrationdata visualizationdatabase schemadesignexperimental studygenetic signaturegenome sequencinggraphical user interfacehigh throughput analysisimaging modalityimprovedin vivo imaginginnovative technologiesinsightknowledge basemetabolomemetabolomicsmultiple omicsnext generation sequencingprecision medicineproduct developmentprototypepublic health researchradiomicsrepositorytooltranscriptometranscriptomicstumoruser centered design
项目摘要
Cancer studies increasingly include medical imaging and measurements from multiple omics techniques. The main impetus for data integration is that, through these integrated data sets, an improved understanding of the underlying biology is obtained to be better able to predict a phenotype and to gain further insight into mechanistic aspects of the system at the molecular level. In this project we propose to develop innovative technologies to integrate metabolite data with multi-omic (metabolomics, proteomics and transcriptomics) and cancer imaging data to enable the detection of subtler and more complex associations among variables, with the medical imaging and the metabolome providing phenotypic measurements to which we can anchor the global measurements of the transcriptome and proteome. The proposed Multi-omics and Imaging Data Analysis System (MIDAS) will provide for the ingestion, annotation, quality control, and analysis of in vivo imaging data combined with ex vivo -omics data to advance research in cancer. MIDAS is aimed at helping the cancer and overall public health research communities advance faster towards the larger goal of precision medicine through valid and reliable data harmonization of metabolomics, transcriptomics, proteomics, radiomics and other imaging data.
癌症研究越来越多地包括医学成像和多种组学技术的测量。数据集成的主要推动力是,通过这些集成的数据集,可以更好地了解基础生物学,从而能够更好地预测表型并在分子水平上进一步深入了解系统的机制方面。在这个项目中,我们建议开发创新技术,将代谢数据与多组学(代谢组学、蛋白质组学和转录组学)和癌症成像数据相整合,从而能够检测变量之间更微妙、更复杂的关联,并通过医学成像和代谢组提供表型测量,我们可以将转录组和蛋白质组的全局测量锚定在表型测量上。拟议的多组学和成像数据分析系统(MIDAS)将提供体内成像数据与离体组学数据相结合的摄取、注释、质量控制和分析,以推进癌症研究。 MIDAS 旨在通过代谢组学、转录组学、蛋白质组学、放射组学和其他成像数据的有效和可靠的数据协调,帮助癌症和整个公共卫生研究界更快地实现精准医学的更大目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Buendia其他文献
Patricia Buendia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Buendia', 18)}}的其他基金
In Vivo Cluster AI Prediction (CLAIRE) of COVID-19 Disease Progression
COVID-19 疾病进展的体内集群 AI 预测 (CLAIRE)
- 批准号:
10256828 - 财政年份:2021
- 资助金额:
$ 22.38万 - 项目类别:
SBIR PHASE II TOPIC "Scalable Automated Brain Tumor Segmentation"
SBIR 第二阶段主题“可扩展的自动化脑肿瘤分割”
- 批准号:
8947908 - 财政年份:2014
- 资助金额:
$ 22.38万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 22.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Upsampling of low-resolution/large-volume 3D tomographic images using generative adversarial neural networks applied to biological anthropology, medical imaging, and evolutionary biology
使用应用于生物人类学、医学成像和进化生物学的生成对抗神经网络对低分辨率/大容量 3D 断层扫描图像进行上采样
- 批准号:
571519-2021 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
Alliance Grants
The biology of Ciceribacter spp. and their adaptations as biological chassis for engineered nitrogen fixation
西塞里杆菌属的生物学。
- 批准号:
2735213 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
Studentship
NSF Postdoctoral Fellowship in Biology: Symbiosis as a Means of Survival for Biological Soil Crust Microbes
NSF 生物学博士后奖学金:共生作为生物土壤结皮微生物的生存手段
- 批准号:
2209217 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
Fellowship Award
Conference: 2023 Stochastic Physics in Biology: Bridging Stochastic Physical Theories with Biological Experiments
会议:2023 年生物学中的随机物理学:将随机物理理论与生物实验联系起来
- 批准号:
2242530 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
Standard Grant
From Big Biological Data to Tangible Insights: Designing tangible and multi-display interactions to support data analysis and model building in the biology domain
从生物大数据到有形洞察:设计有形和多显示交互以支持生物学领域的数据分析和模型构建
- 批准号:
RGPIN-2021-03987 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
Discovery Grants Program - Individual
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
Discovery Grants Program - Individual
BEORHN: Biological Enzymatic Oxidation of Reactive Hydroxylamine in Nitrification via Combined Structural Biology and Molecular Simulation
BEORHN:通过结合结构生物学和分子模拟对硝化反应中的活性羟胺进行生物酶氧化
- 批准号:
BB/V01577X/1 - 财政年份:2022
- 资助金额:
$ 22.38万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2020: Integrating biological collections and observational data sources to estimate long-term butterfly population trends
2020 财年 NSF 生物学博士后奖学金:整合生物收藏和观测数据源来估计蝴蝶种群的长期趋势
- 批准号:
2010698 - 财政年份:2021
- 资助金额:
$ 22.38万 - 项目类别:
Fellowship Award
Engineering of next-generation synthetic biology tools for biological applications
用于生物应用的下一代合成生物学工具的工程
- 批准号:
RGPIN-2019-07002 - 财政年份:2021
- 资助金额:
$ 22.38万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




