SBIR PHASE II TOPIC "Scalable Automated Brain Tumor Segmentation"
SBIR 第二阶段主题“可扩展的自动化脑肿瘤分割”
基本信息
- 批准号:8947908
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-19 至 2016-09-18
- 项目状态:已结题
- 来源:
- 关键词:BrainBrain NeoplasmsCentral Nervous System NeoplasmsCessation of lifeClinicComputer softwareDataDetectionDiagnosisDisease ProgressionEquipmentGoalsImageImageryIndividualKnowledgeLocationMagnetic Resonance ImagingMalignant - descriptorManualsMeasuresNeurosurgeonNoiseNon-MalignantOncologistPatientsProcessProductionReportingSemanticsSmall Business Innovation Research GrantStructureSystemTestingTimeTreatment EffectivenessUnited StatesVendorbrain tissueburden of illnessclinical practicegraphical user interfaceinteroperabilityradiologistresponsetooltreatment planningtumoruser-friendly
项目摘要
Brain tumor segmentation in Magnetic Resonance Imaging is an important task for neurosurgeons, oncologists, and
radiologists to assess disease burden and measure tumor response to treatment. Over 237,000 individuals worldwide
are estimated to have been diagnosed with malignant brain and CNS with over 174,000 deaths. In the United States
alone, over 66,000 new cases of primary malignant and non-malignant brain and CNS tumors are expected to
be diagnosed in 2014. Detection of brain tumors with the exact location and orientation is extremely important for
effective diagnosis, treatment planning, and analysis of treatment effectiveness; however, manual delineation of
the tumor takes considerable time and is prone to error and wide variability. The overall goal of this proposal is to
develop a scalable and automated approach for the segmentation of brain tumors. The aims of the project are: 1)
Produce a clinic ready software package with user-friendly graphical user interface to manage the process of brain
tumor segmentation and quantitative imaging. 2) Implement the production software module to accurately detect and
classify brain tissues from multi-channel MRI data. 3) Support quantitative imaging, system interoperability, structured
reporting, and knowledge integration through the use of semantics and annotation standards. 4) Demonstrate the
software produces clinically validated results for accurate assessment from MRI data of the brain under varying
conditions of noise, spatial inhomogeneities, localized scanner settings and vendor equipment. 5) Package, deploy,
and test the SABTS tools to be used in clinical practice for the accurate detection, visualization, and assessment of
disease progression in patients with brain tumors.
磁共振成像中的脑肿瘤分割是神经外科医生、肿瘤学家和神经外科医生的重要任务。
放射科医生评估疾病负担和测量肿瘤对治疗的反应。全球超过237,000人
估计有超过174,000人被诊断患有恶性脑和中枢神经系统疾病。在美国
仅在2015年,预计就有超过66,000例原发性恶性和非恶性脑和中枢神经系统肿瘤的新病例,
2014年确诊。准确定位和定向的脑肿瘤检测对于
有效的诊断、治疗计划和治疗效果分析;然而,
肿瘤需要相当长的时间,并且易于出错和变化很大。本提案的总体目标是
开发一种可扩展的自动化方法来分割脑肿瘤。该项目的目标是:1)
制作一个临床就绪的软件包,具有用户友好的图形用户界面,以管理大脑的过程
肿瘤分割和定量成像。2)实施生产软件模块,以准确检测和
从多通道MRI数据中对脑组织进行分类。3)支持定量成像、系统互操作性、结构化
报告,以及通过使用语义和注释标准的知识集成。4)证明
软件产生临床验证的结果,用于根据不同条件下大脑的MRI数据进行准确评估。
噪声条件、空间不均匀性、局部扫描仪设置和供应商设备。5)打包部署,
并测试SABTS工具用于临床实践,以准确检测,可视化和评估
脑肿瘤患者的疾病进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Buendia其他文献
Patricia Buendia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Buendia', 18)}}的其他基金
In Vivo Cluster AI Prediction (CLAIRE) of COVID-19 Disease Progression
COVID-19 疾病进展的体内集群 AI 预测 (CLAIRE)
- 批准号:
10256828 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Platform for High-Throughput Analysis of Integrated Cancer Imaging and Multi-Omics Data
综合癌症成像和多组学数据高通量分析平台
- 批准号:
9568920 - 财政年份:2017
- 资助金额:
$ 100万 - 项目类别:
相似海外基金
Nanocage-based systemic delivery of TGFβ trap for immunomodulation of brain neoplasms
基于 Nanocage 的 TGFβ 陷阱系统递送用于脑肿瘤的免疫调节
- 批准号:
10576313 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Nanocage-based systemic delivery of TGFβ trap for immunomodulation of brain neoplasms
基于 Nanocage 的 TGFβ 陷阱系统递送用于脑肿瘤的免疫调节
- 批准号:
10399979 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Experimental Analysis of Intracerebral Immunosurveillance Mechanism and Its Clinical Application to Management of Brain Neoplasms
脑内免疫监视机制的实验分析及其在脑肿瘤治疗中的临床应用
- 批准号:
09470295 - 财政年份:1997
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of relationship between immunosurveillance and tumorigenesis in the brain and new approach to treatment of brain neoplasms
免疫监视与脑肿瘤发生关系分析及脑肿瘤治疗新途径
- 批准号:
07457316 - 财政年份:1995
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Intracellular calcium signaling in malignant brain tumor cells and new application to the management of the brain neoplasms
恶性脑肿瘤细胞中的细胞内钙信号传导及其在脑肿瘤治疗中的新应用
- 批准号:
05454398 - 财政年份:1993
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)














{{item.name}}会员




