technologyIn vitro maturation of BMP-7-responsive pancraeatic beta cell progenitors by oxygen modulation
技术通过氧调节使 BMP-7 反应性胰腺 β 细胞祖细胞体外成熟
基本信息
- 批准号:9344589
- 负责人:
- 金额:$ 71.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAdministratorAdultAlpha CellAreaAutoimmune DiabetesAutomobile DrivingAwardBMP7 geneBeta CellBiologyBiotechnologyCell Differentiation processCell LineageCell MaturationCell TherapyCellsClinicalClinical TrialsCollaborationsContractsCoupledCyclic GMPDataDevelopmentDevice DesignsDevicesDiabetes MellitusEmbryoEndocrineEnhancement TechnologyEvolutionExhibitsExposure toFDA approvedFundingGenerationsGlucoseGrowthHumanImmunityIn SituIn VitroIndustryInsulinInsulin-Dependent Diabetes MellitusIslets of Langerhans TransplantationKnowledgeLeadLegal patentLengthLicensingMediatingMethodsMissionMusNatural regenerationNatureNon-Insulin-Dependent Diabetes MellitusOrganOrgan DonorOxygenPancreasPathway interactionsPatientsPhasePhenotypePhysiologicalPluripotent Stem CellsPopulationPreparationProceduresProcessProductionProgress ReportsProtocols documentationPublicationsPublishingReportingResearchResearch InstituteSafetySourceStem cellsTechniquesTechnologyTestingTherapeuticTimeTissuesTractionTransplantationUnited States National Institutes of HealthUniversitiesWashingtonWorkbasecell typeclinical applicationdesigndrug discoveryeffective therapyexperienceexperimental studyfallshuman embryonic stem cellhuman pluripotent stem cellimprovedin vivoisletmouse modelnovelphase 2 studyprogenitorprospectivereceptorresponsescale upsuccesstissue preparation
项目摘要
PROJECT SUMMARY
Islet transplantation represents the current cell therapy standard for type 1 diabetes (T1D).
However, the gap between the availability of donor organs and the clinical demand for them
calls for the development of alternative/renewable sources of insulin-producing cells. In
addition to this therapeutic need, a steady supply of islets is also needed for research and
drug discovery purposes. Human embryonic stem cells (hESc) differentiated into pancreatic
-cell precursors are presently the subject of Phase I/II clinical trials. However, the success of
this approach hinges on the assumption that the microenvironment that leads to effective
maturation in a mouse model will be the same in human patients with autoimmune diabetes.
The safety of partially differentiated hESc-derived products, efficacy of the macro-
encapsulation devices used to shield them from allo- and auto-immunity, and lag time to
functional maturation remain open questions. The use of insulin-producing cells that are
mature and functional at the time of transplantation may circumvent some of these problems.
However, despite claims to the contrary, there is no current protocol to date that yields -like
cells capable of reversing diabetes right after transplantation.
In collaboration with our partners at the University of Miami, Ophysio, Inc. has successfully
developed a platform to aid in the terminal in vitro differentiation of pancreatic progenitors
(PPs) of different origins (hESc and native murine pancreas). This patented technology is
based on the accurate targeting of physiological oxygenation throughout cell aggregates in
culture –which conventional means of culture fail to achieve. Oxygen tension lies at the
crossroads of key pancreatic differentiation pathways, and its evolution throughout
development has been conclusively shown to drive cell fate. Here we seek to extend these
principles to the terminal maturation of a novel sub-population of PPs that our collaborators
have described in human non-endocrine pancreatic tissue (hNEPT), which comprises 98% of
the pancreas and is routinely discarded after islet isolation. This sub-population, identified
through in vitro lineage-tracing techniques, is characterized by its responsiveness to the FDA-
approved bone morphogenetic protein 7 (BMP-7). hNEPT exposure to BMP-7 results in the
efficient (up to 15% in preliminary data) generation of endocrine cells that secrete insulin at
levels that fall right within the range published for human isolated islets and exhibit robust
glucose responsiveness in vitro and in vivo. Our Phase II studies aim at capitalizing on our
Phase I data. These include not only the proof of principle that oxygen modulation improves
BMP-7-mediated conversion of hNEPT, but also new findings on the phenotype of BMP-7
responsive cells that will allow for their prospective isolation from raw hNEPT preparations.
Our specific aims are: (1) To determine whether in vitro targeting of physiological pO2 in PDX1
(P2RY1)+/ALK3+-sorted hNEPT subpopulations results in functional -like cells capable of
reversing diabetes in mice; and (2) To scale up the process using an entire organ (10-12 ml
of hNEPT pellet after islet isolation) using Ophysio’s new T75 oxygen-modulating devices
(designed in the context of our previous award 2R44DK083832-02). In addition to the
optimization and scale up of the process, we will simultaneously establish cGMP
manufacturing protocols, file for IP protection of the final method and begin licensing contracts
with parties for use of the process to obtain the cells for research purposes.
We contend that BMP-7-responsive PPs from hNEPT represent a valid alternative to hESc
for clinical applications, as this technology capitalizes on current clinical strategies (islet
isolation and transplantation) for which there are already well established networks; increased
safety of adult cell products vs. hESc-derived ones; and ease of in vitro
expansion/differentiation using a single, FDA-approved clinical product. Coupled with
Ophysio’s technology for enhanced in vitro maturation, this approach has rapid translational
potential for the treatment of diabetes mellitus.
项目摘要
胰岛移植代表了1型糖尿病(T1D)的当前细胞治疗标准。
但是,供体器官的可用性与对其的临床需求之间的差距
需要开发产生胰岛素细胞的替代/可再生能源。在
除了这种治疗需求外,研究还需要稳定的胰岛供应
药物发现目的。人类胚胎干细胞(HESC)分化为胰腺
细胞前体目前是I/II期临床试验的主题。但是,成功
这种方法取决于这样的假设,即导致有效的微环境
在自身免疫性糖尿病的人类患者中,小鼠模型中的成熟将相同。
部分分化的hESC衍生产品的安全性,宏观的效率
封装设备,用于保护它们免受异源和自动免疫的侵害,并滞后时间
功能性成熟仍然是空旷的问题。使用产生胰岛素的细胞的使用
移植时的成熟和功能可能避免其中一些问题。
但是,目的地要求对比,迄今为止没有当前的协议可以产生
能够在移植后立即逆转糖尿病的细胞。
与我们在迈阿密大学Ophysio,Inc。的合作伙伴合作已成功
开发了一个平台,以帮助胰腺祖细胞的体外分化
(pps)不同起源(hESC和本地鼠胰腺)。该专利技术是
基于整个细胞聚集体的物理充氧的准确靶向
文化 - 哪种传统文化手段无法实现。氧张力位于
关键胰腺分化途径的十字路口及其在整个过程中的发展
发育已被确定地证明可以驱动细胞命运。在这里,我们试图扩展这些
我们的合作者的新型PPS的新型子人群的终末成熟原理
已经在人非内分泌胰腺组织(HNEPT)中描述了,该组织占98%
胰腺并在胰岛隔离后通常会丢弃。该子人群确定
通过体外谱系追踪技术的特征是其对FDA-的反应性
批准的骨形态发生蛋白7(BMP-7)。暴露于BMP-7导致
有效的(初步数据中最多15%)的内分泌细胞产生,秘密胰岛素
恰好属于人类孤立胰岛和暴露稳健的范围内的水平
体外和体内葡萄糖反应能力。我们的第二阶段研究旨在利用我们的
第一阶段数据。这些不仅包括氧气调节改善的原理证明
BMP-7介导的HNEPT的转化,但也是关于BMP-7表型的新发现
响应细胞将允许其从原始的Hnept制剂中进行前瞻性隔离。
我们的具体目的是:(1)确定PDX1中物理PO2的体外靶向
(p2ry1)+/alk3+分级的Hnept亚群会导致功能性类细胞能够
逆转小鼠的糖尿病; (2)使用整个器官(10-12 mL)扩展过程
使用Ophysio的新型T75氧气调节装置后,胰岛隔离后的Hnept颗粒
(在我们以前的奖项2R44DK083832-02的背景下设计)。除了
优化和扩展过程,我们将简单地建立CGMP
制造协议,最终方法的IP保护文件并开始许可合同
与当事方一起使用该过程来获取用于研究目的的细胞。
我们认为,HNEPT的BMP-7响应PPS代表HESC的有效替代方案
对于临床应用,随着该技术利用当前的临床策略(Islet)
隔离和移植)已经建立了良好的网络;增加
成人细胞产品与hESC衍生产品的安全性;并易于体外
使用单一的FDA批准的临床产品扩展/分化。加上
Ophysio的技术增强了体外成熟的技术,这种方法具有快速的翻译
治疗糖尿病的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Dominguez-Bendala其他文献
Juan Dominguez-Bendala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Dominguez-Bendala', 18)}}的其他基金
Single-cell longitudinal analysis of regeneration in human pancreatic slices
人胰腺切片再生的单细胞纵向分析
- 批准号:
10336196 - 财政年份:2021
- 资助金额:
$ 71.09万 - 项目类别:
Single-cell longitudinal analysis of regeneration in human pancreatic slices
人胰腺切片再生的单细胞纵向分析
- 批准号:
10490330 - 财政年份:2021
- 资助金额:
$ 71.09万 - 项目类别:
Single-cell longitudinal analysis of regeneration in human pancreatic slices
人胰腺切片再生的单细胞纵向分析
- 批准号:
10677724 - 财政年份:2021
- 资助金额:
$ 71.09万 - 项目类别:
HIGH-RESOLUTION CHARACTERIZATION OF HUMAN DUCTAL PROGENITOR CELLS AND THEIR REGENERATION POTENTIAL
人类导管祖细胞及其再生潜力的高分辨率表征
- 批准号:
10252070 - 财政年份:2018
- 资助金额:
$ 71.09万 - 项目类别:
HIGH-RESOLUTION CHARACTERIZATION OF HUMAN DUCTAL PROGENITOR CELLS AND THEIR REGENERATION POTENTIAL
人类导管祖细胞及其再生潜力的高分辨率表征
- 批准号:
9788440 - 财政年份:2018
- 资助金额:
$ 71.09万 - 项目类别:
HIGH-RESOLUTION CHARACTERIZATION OF HUMAN DUCTAL PROGENITOR CELLS AND THEIR REGENERATION POTENTIAL
人类导管祖细胞及其再生潜力的高分辨率表征
- 批准号:
10186697 - 财政年份:2018
- 资助金额:
$ 71.09万 - 项目类别:
Preclinical characterization of THR-123 to induce pancreatic beta cell regeneration (Phase I)
THR-123 诱导胰腺 β 细胞再生的临床前表征(第一阶段)
- 批准号:
9465072 - 财政年份:2017
- 资助金额:
$ 71.09万 - 项目类别:
A perfluorocarbon-based culture device for beta cell biology applications (Phase
用于 β 细胞生物学应用的基于全氟化碳的培养装置(Phase
- 批准号:
8487397 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
A perfluorocarbon-based culture device for beta cell biology applications (Phase
用于 β 细胞生物学应用的基于全氟化碳的培养装置(Phase
- 批准号:
8314435 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
Somatic cell reprogramming by protein transduction
通过蛋白质转导进行体细胞重编程
- 批准号:
7761208 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
相似海外基金
A perfluorocarbon-based culture device for beta cell biology applications (Phase
用于 β 细胞生物学应用的基于全氟化碳的培养装置(Phase
- 批准号:
8487397 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别:
A perfluorocarbon-based culture device for beta cell biology applications (Phase
用于 β 细胞生物学应用的基于全氟化碳的培养装置(Phase
- 批准号:
8314435 - 财政年份:2009
- 资助金额:
$ 71.09万 - 项目类别: