Area C: Genome-wide identification and targeting of resistance to cancer therapy
C 区:全基因组鉴定和针对癌症治疗耐药性的靶向
基本信息
- 批准号:9482962
- 负责人:
- 金额:$ 21.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2018-04-04
- 项目状态:已结题
- 来源:
- 关键词:AddressAftercareAlgorithmsAntineoplastic AgentsAreaCancer cell lineCellsCharacteristicsClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCollectionColon CarcinomaCombined Modality TherapyCommunitiesDNA sequencingDataData SetDevelopmentDrug CombinationsDrug resistanceEventEvolutionGene SilencingGenesGeneticGenomicsHead CancerHead and neck structureIndividualLeadLettersMalignant NeoplasmsMeasuresMethylationMolecularMolecular ProfilingMonitorMutationNeck CancerPathway interactionsPatientsPerformancePharmaceutical PreparationsPublishingRecommendationResearch DesignResistanceSamplingTestingThe Cancer Genome AtlasTherapeuticWorkbasecancer cellcancer genomecancer therapycancer typecohortcombinatorialdata miningexperimental studyfitnessgene interactiongenome-widegenome-wide analysishigh throughput screeninginterestmalignant breast neoplasmmelanomanovelresponsescreeningsmall moleculesuccesstargeted treatmenttooltranscriptome sequencingtumoruser-friendly
项目摘要
Summary: Area C: Genome-wide identification and targeting of resistance to cancer therapy
The frequent emergence of resistance to anti-cancer therapies remains a major challenge in cancer treatment
that is of utmost importance. Recent clinical and experimental studies addressing this problem require the
arduous collection of pre- and post- treatment data for every new specific treatment and cancer type studied.
Thus, a computational approach that can expedite the identification of molecular determinants of resistance
via the analysis of existing large-scale cancer cohorts is called for.
Our proposal seeks to identify novel ways to counter de novo and acquired resistance through drug
combinations. We focus on gene interactions rather than individual genes and leverage large scale genomic
datasets and patient response data. Our approach is based on recent work in the Ruppin and other labs
showing that genetic interactions can be computationally identified by analyzing omics tumor data.
To decipher pathways of resistance to cancer therapies, we focus here on studying a new type of genetic
interactions, termed synthetic rescues (SRs). SRs denote a functional interaction between two genes whereby a
fitness reducing change in the activity of one of the two genes (termed the vulnerable gene) is compensated by
altered activity of another gene (termed the rescuer gene), which restores cell fitness and rescues it. We have
recently developed tools for SR data-driven identification from large cancer tumors cohorts, successfully
enabling the prediction of drug response and emergence of resistance in patients. Building on these
transformational results the specific aims of this proposal are:
Specific Aim 1. Perform a pan-cancer and cancer type-specific SR-based analyses, focusing on
melanoma, breast, head and neck, and colon cancer, identifying the major rescuer genes in each
cancer type, together with specific recommendations of combinatorial therapies mitigating resistance.
Specific Aim 2. Develop a new version of SR analysis tools that will be made publically available
for use by others in a standard, user friendly manner and includes analysis of gene methylation and
genome wide mutation data, on top of other omics data already utilized in our previous SR inference tools.
Specific Aim 3. Experimentally test predicted rescuer targets and combination therapies in
patient derived resistant cancer cells.
Taken together the proposed study, will present a transformative SR based approach for identifying and
targeting resistance pathways across the whole cancer genome.
摘要:区域C:全基因组识别和抗癌治疗的靶向
抗癌药物耐药性的频繁出现仍然是癌症治疗中的一大挑战
这是最重要的。最近针对这一问题的临床和实验研究需要
为所研究的每一种新的特定治疗和癌症类型收集治疗前和治疗后的数据。
因此,一种可以加快鉴定抗性分子决定因素的计算方法
通过对现有大规模癌症队列的分析,提出了建立癌症队列的建议。
我们的建议旨在找出通过药物对抗从头开始和获得性耐药性的新方法
组合。我们关注的是基因间的相互作用,而不是单个基因,并利用大规模基因组
数据集和患者响应数据。我们的方法是基于Ruppin和其他实验室的最新工作
表明可以通过分析组学肿瘤数据来计算识别遗传交互作用。
为了破译癌症治疗的耐药途径,我们在这里重点研究了一种新型的基因
相互作用,称为合成救援(SRS)。SRS表示两个基因之间的功能相互作用,其中
适合度降低两个基因之一(称为脆弱基因)活性的变化通过以下方式补偿
另一种基因(称为救助者基因)的活性发生了变化,它可以恢复细胞的健康并拯救它。我们有
最近开发的工具,用于从大型癌症肿瘤队列中进行SR数据驱动的识别,成功
从而能够预测患者的药物反应和出现耐药性。建立在这些基础上
转型成果这项提议的具体目标是:
具体目标1.执行基于泛癌症和癌症类型特定SR的分析,重点是
黑色素瘤、乳腺癌、头颈部和结肠癌,确定每种疾病的主要救治基因
癌症类型,以及减轻耐药性的联合治疗的具体建议。
具体目标2.开发新版本的SR分析工具,该工具将公开提供
供其他人以标准、用户友好的方式使用,并包括对基因甲基化和
基因组范围的突变数据,在我们之前的SR推理工具中已经使用的其他组学数据的基础上。
具体目标3.实验测试预测的救援目标和联合疗法
患者衍生的耐药癌细胞。
综上所述,拟议的研究将提出一种基于SR的变革性方法,用于识别和
靶向整个癌症基因组中的耐药途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jorge Silvio Gutkind其他文献
Jorge Silvio Gutkind的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jorge Silvio Gutkind', 18)}}的其他基金
Co-targeting the HER3 oncogenic signaling circuitry and PD-1 as a novel multimodal precision immunotherapy for HNSCC
联合靶向 HER3 致癌信号通路和 PD-1 作为 HNSCC 的新型多模式精准免疫疗法
- 批准号:
10536607 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
Multidisciplinary Educational Approach to Reducing Cancer Disparities
减少癌症差异的多学科教育方法
- 批准号:
10683194 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
Multidisciplinary Educational Approach to Reducing Cancer Disparities
减少癌症差异的多学科教育方法
- 批准号:
10246272 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
Multidisciplinary Educational Approach to Reducing Cancer Disparities
减少癌症差异的多学科教育方法
- 批准号:
10002204 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
Targeting the EGFR-PI3K/mTOR Signaling Circuitry: A Network-Based Approach for Oral Cancer Precision Therapy
靶向 EGFR-PI3K/mTOR 信号通路:基于网络的口腔癌精准治疗方法
- 批准号:
10439800 - 财政年份:2018
- 资助金额:
$ 21.62万 - 项目类别:
Targeting the EGFR-PI3K/mTOR Signaling Circuitry: A Network-Based Approach for Oral Cancer Precision Therapy
靶向 EGFR-PI3K/mTOR 信号通路:基于网络的口腔癌精准治疗方法
- 批准号:
10214590 - 财政年份:2018
- 资助金额:
$ 21.62万 - 项目类别:
Stimulating Neo-Antigen Specific T Cell Responses in Head and Neck Cancers
刺激头颈癌中新抗原特异性 T 细胞反应
- 批准号:
10115173 - 财政年份:2018
- 资助金额:
$ 21.62万 - 项目类别:
相似海外基金
Life outside institutions: histories of mental health aftercare 1900 - 1960
机构外的生活:1900 - 1960 年心理健康善后护理的历史
- 批准号:
DP240100640 - 财政年份:2024
- 资助金额:
$ 21.62万 - 项目类别:
Discovery Projects
Development of a program to promote psychological independence support in the aftercare of children's homes
制定一项计划,促进儿童之家善后护理中的心理独立支持
- 批准号:
23K01889 - 财政年份:2023
- 资助金额:
$ 21.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10452217 - 财政年份:2022
- 资助金额:
$ 21.62万 - 项目类别:
Integrating Smoking Cessation in Tattoo Aftercare
将戒烟融入纹身后护理中
- 批准号:
10670838 - 财政年份:2022
- 资助金额:
$ 21.62万 - 项目类别:
Aftercare for young people: A sociological study of resource opportunities
年轻人的善后护理:资源机会的社会学研究
- 批准号:
DP200100492 - 财政年份:2020
- 资助金额:
$ 21.62万 - 项目类别:
Discovery Projects
Creating a National Aftercare Strategy for Survivors of Pediatric Cancer
为小儿癌症幸存者制定国家善后护理策略
- 批准号:
407264 - 财政年份:2019
- 资助金额:
$ 21.62万 - 项目类别:
Operating Grants
Aftercare of green infrastructure: creating algorithm for resolving human-bird conflicts
绿色基础设施的善后工作:创建解决人鸟冲突的算法
- 批准号:
18K18240 - 财政年份:2018
- 资助金额:
$ 21.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an aftercare model for children who have experienced invasive procedures
为经历过侵入性手术的儿童开发善后护理模型
- 批准号:
17K12379 - 财政年份:2017
- 资助金额:
$ 21.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Comprehensive Aftercare Program for children's self-reliance support facility
为儿童自力更生支持设施制定综合善后护理计划
- 批准号:
17K13937 - 财政年份:2017
- 资助金额:
$ 21.62万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Project#2 Extending Treatment Effects Through an Adaptive Aftercare Intervention
项目
- 批准号:
8742767 - 财政年份:2014
- 资助金额:
$ 21.62万 - 项目类别:














{{item.name}}会员




