Ultrasound enhanced platelet-like particle therapy for accelerated wound repair
超声增强血小板样粒子治疗加速伤口修复
基本信息
- 批准号:9387659
- 负责人:
- 金额:$ 18.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-17 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesionsAffectAffinityAgingAntibodiesAtomic Force MicroscopyBedsBindingBiologicalBiological AssayBlood PlateletsBlood flowCellsChronicClot retractionCoagulation ProcessContractsCoupledCuesCytoskeletonDevelopmentDiabetes MellitusDiabetic mouseEnsureEventExtracellular MatrixFiberFibrinFibrinolysisFibroblastsHealth Care CostsHealthcareHemorrhageHourIn VitroInjuryKineticsMechanical StimulationMechanicsMediatingMicroscopicMovementNatureObesityOutcomePathway interactionsPatientsPolymersProductionPublic HealthPublishingResearch Project GrantsRiskScanning Electron MicroscopyScienceSignal TransductionSpecificityTechnologyTestingThrombusTimeTissuesTransforming Growth Factor betaUltrasonic TherapyUltrasonographyUnited StatesWorkWound Healingaging populationcell behaviorchronic wounddesigneffective therapyhealingin vivoinnovationmigrationmouse modelnon-healing woundsparticleparticle therapypoly-N-isopropylacrylamidepreventresponse to injuryrho GTP-Binding Proteinssimulationsuccesstissue phantomwoundwound closure
项目摘要
PROJECT SUMMARY
Chronic wounds affect over 6.5 million patients in the United States alone and result in health costs of more than
$25 billion annually. Proper wound healing is the result of a large number of interrelated biological events, which
are orchestrated temporally in response to the injury microenvironment. Immediately following injury, a clot is
produced which involves the formation of a platelet plug embedded within a fibrin mesh. Platelets bind multiple
fibrin fibers and overtime, platelets contract this fibrin mesh through actin driven mechanisms, which
contributes to subsequent wound healing by stabilizing the fibrin network, further preventing blood loss, and
restoring blood flow past the otherwise obstructive thrombi. Platelet-mediated clot retraction, significantly
decreases clot size, alters clot organization, and increases clot stiffness. Increased matrix stiffness has been
implicated in activation of important mechanically sensitive pathways involved in wound healing, including Rho
GTPase signaling, actin cytoskeleton engagement and mechanical activation of transforming growth factor beta
(TGFβ), which in turn promote fibroblast migration into the wound bed and extracellular matrix (ECM)
production. Importantly, chronic non-healing wounds are characterized by significantly decreased activation of
these cellular events. The long-term objective of this proposal is to utilize recently develop platelet-like-
particles (PLPs) that mimic this clot retraction feature of native platelets to promote healing in chronic non-
healing wounds. PLP-mediated clot retraction occurs via a collective Brownian wrench mechanism to collapse
the local fibrin matrix, inducing both global and cell-scale deformations, which ultimately leads to global clot
collapse. Particle deformability and high fibrin affinity are critical to achieving PLP-mediated clot retraction.
However, the dynamics of PLP-mediated clot retraction are much slower (days) than that of natural platelets
(hours). To obtain the benefits of clot retraction in wound repair, it is critical to increase the rate of PLP-mediated
clot retraction, to more closely recapitulate the time scale of natural platelets. Therefore, the overarching
objective of this proposal is to utilize ultrasound (US) stimulation of PLPs to increase the deformation of PLPs
within the fibrin network in order to increase the rate of clot retraction in a finely controlled manner. Our
central hypothesis is that 1) US stimulation will increase PLP deformations within the fibrin network,
thereby increasing interactions with the fibrin network and the rate and degree of PLP-mediated clot
retraction; and 2) enhanced clot retraction will increase clot stiffness, promote fibroblast migration into the
wound bed through activation of Rho GTPase signaling, increase ECM production, and increase wound closure
rates in vitro and in vivo. We will explore this hypothesis in the following aims: 1) Determine the optimal
US sequence to maximize PLP deformation and increase kinetics of PLP-mediated clot
retraction. 2) Characterize the effect of PLP-US therapy on wound healing outcomes in vitro and
in vivo. The significance of our proposed work is the development of a simple and translatable technology
enabling the effective treatment of non-healing wounds.
项目摘要
仅在美国,慢性伤口就会影响超过650万患者,导致健康成本超过
每年250亿美元。适当的伤口愈合是大量相互关联的生物事件的结果,
根据伤害微环境暂时精心策划。受伤后立即,一个凝块是
产生的,涉及形成纤维蛋白网中的血小板塞的形成。血小板结合多个
纤维蛋白纤维和加班,血小板通过肌动蛋白驱动机制收缩此纤维蛋白网状,该机制是
通过稳定纤维蛋白网络,进一步防止失血和
恢复血液经过原本阻塞性血栓。血小板介导的克隆回缩,显着
矩阵刚度的增加已经
在激活伤口愈合中涉及的重要机械敏感途径的激活中实施,包括Rho
GTPase信号传导,肌动蛋白细胞骨架参与度和转化生长因子β的机械激活
(TGFβ),进而促进成纤维细胞迁移到伤口床和细胞外基质(ECM)
生产。重要的是,慢性非治疗伤口的特征是显着改善
这些细胞事件。该提议的长期目标是利用最近开发的类似血小板的样子
颗粒(PLP)模仿天然血小板的这种克隆缩回特征,以促进慢性非 -
治愈伤口。 PLP介导的克隆缩回是通过集体的布朗扳手机制倒塌的
局部纤维蛋白基质诱导全球和细胞尺度变形,最终导致全局克隆
坍塌。颗粒的变形性和高纤维蛋白亲和力对于实现PLP介导的克隆回收至关重要。
但是,PLP介导的克隆回收的动力学比天然血小板慢得多(天)
(小时)。为了获得凝块缩回在伤口修复中的益处,提高PLP介导的速率至关重要
凝块回缩,以更紧密地概括天然血小板的时间尺度。因此,总体
该建议的目的是利用PLP的超声模拟(US)来增加PLP的变形
在纤维蛋白网络中,以以精细控制的方式提高凝块回收速率。我们的
中心假设是1)美国刺激将增加纤维蛋白网络内的PLP变形,
从而增加与纤维蛋白网络的相互作用以及PLP介导的克隆的速率和程度
撤回; 2)增强的凝块回缩将增加凝块刚度,促进成纤维细胞迁移到
通过激活Rho GTPase信号传导,增加ECM产生并增加伤口闭合,伤口床
体外和体内的比率。我们将在以下目的中探讨这一假设:1)确定最佳
美国序列以最大化PLP变形并增加PLP介导的克隆的动力学
撤回。 2)表征PLP-US治疗对体外伤口愈合结果的影响
体内。我们提出的工作的意义是开发简单且可翻译的技术
实现非治疗收益的有效治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashley Carson Brown其他文献
Ashley Carson Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashley Carson Brown', 18)}}的其他基金
Anti-microbial platelet-like-particles to treat internal bleeding and augment subsequent healing
抗菌血小板样颗粒可治疗内出血并促进后续愈合
- 批准号:
10666168 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10530989 - 财政年份:2022
- 资助金额:
$ 18.49万 - 项目类别:
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10672059 - 财政年份:2019
- 资助金额:
$ 18.49万 - 项目类别:
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10223925 - 财政年份:2019
- 资助金额:
$ 18.49万 - 项目类别:
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10673209 - 财政年份:2019
- 资助金额:
$ 18.49万 - 项目类别:
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10903125 - 财政年份:2019
- 资助金额:
$ 18.49万 - 项目类别:
Targeted treatment of thrombotic occlusions using a dual-delivery microgel therapeutic
使用双重递送微凝胶治疗剂靶向治疗血栓闭塞
- 批准号:
10457953 - 财政年份:2019
- 资助金额:
$ 18.49万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Role of myosin 1e in podocyte biology and renal filtration
肌球蛋白 1e 在足细胞生物学和肾滤过中的作用
- 批准号:
10587345 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
- 批准号:
10798520 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Dissecting the Molecular Link Between Stroke, Actin, and Alzheimer's Disease
剖析中风、肌动蛋白和阿尔茨海默病之间的分子联系
- 批准号:
10772704 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别: