Regulation of cilia by ceramide

神经酰胺对纤毛的调节

基本信息

  • 批准号:
    9543721
  • 负责人:
  • 金额:
    $ 35.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-30 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Cilia are protrusions of the cell membrane with sensory (primary cilia) or motor (motile cilia) function. In astrocytes and ependymal cells, primary and motile cilia regulate cell division and migration, and propel cerebrospinal fluid (CSF), respectively. Ciliary dysfunction leads to astrocytic overgrowth (astrogliosis) or ependymal cell malfunction and hydrocephalus. It is vital for the function of cilia in cell signaling and motility that cilium number, length, and intraciliary or intraflagellar transport (IFT) of cargo proteins are dynamically regulated. A critical barrier in understanding this regulation is the lack of knowledge on dynamically activated factors in ciliogenesis and cilium function. Although cilia are membrane structures, research so far has focused on the role of proteins in the regulation of cilia, and little is known about the role of lipids in this process. Our research goals are to determine how membrane lipids and proteins interact in the regulation of cilia and how modulation of lipid metabolism can be utilized to support the function of cilia in astrocytes and ependymal cells. Our central hypothesis is that the sphingolipid ceramide regulates cilium length and IFT, which is critical for the function of cilia in astrocytes and ependymal cells. Our objectives are to 1) test that cilia are regulated by ceramide-associated protein complexes; 2) define these complexes by using a novel technique to pull down ceramide enriched- and cilium-derived membrane vesicles and covalently crosslink a bifunctional ceramide analog to its interacting proteins to identify ceramide binding domains; 3) test that induction of receptors in cilia is regulated by ceramide; and 4) test that astroglial activation and ependymal cell function is regulated by ceramide in vitro and in vivo. Our expected outcomes include 1) determining ceramide species that promote ciliogenesis and support cilium function, and how the generation of ciliogenic ceramide is regulated; 2) defining a mechanism of cilium extension and IFT regulation by interaction of ceramide with atypical PKC, GSK-3β, and HDAC6; 3) defining SMase activation in vesicle transport pathways and their function for ceramide flux to the cilium; 4) identifying proteins and protein domains that associate with ceramide; 5) determining that transport and activation of signaling proteins in cilia, in particular of the sonic hedgehog pathway, are regulated by ceramide; and 6) defining a mechanism by which ceramide regulates astrocyte activation and ependymal cell- driven CSF flow. The impact of this project is on defining a fundamental and novel mechanism in basic neuroscience and membrane biology, which has broad implications for our understanding of the regulation of cilia by lipid-protein interaction and the importance of this regulation for the function of astrocytes and ependymal cells during brain development and aging. Aim 1 will test the hypothesis that ceramide stabilizes cilia in astrocytes and ependymal cells. Aim 2 will test the hypothesis that ceramide regulates IFT and receptor activation in cilia. Aim 3 will test the hypothesis that ciliogenic ceramide regulates astrocyte and ependymal cell function.
Cilia are protrusions of the cell membrane with sensory (primary cilia) or motor (motile cilia) function. In astrocytes and ependymal cells, primary and motile cilia regulate cell division and migration, and propel cerebrospinal fluid (CSF), respectively. Ciliary dysfunction leads to astrocytic overgrowth (astrogliosis) or ependymal cell malfunction and hydrocephalus. It is vital for the function of cilia in cell signaling and motility that cilium number, length, and intraciliary or intraflagellar transport (IFT) of cargo proteins are dynamically regulated. A critical barrier in understanding this regulation is the lack of knowledge on dynamically activated factors in ciliogenesis and cilium function. Although cilia are membrane structures, research so far has focused on the role of proteins in the regulation of cilia, and little is known about the role of lipids in this process. Our research goals are to determine how membrane lipids and proteins interact in the regulation of cilia and how modulation of lipid metabolism can be utilized to support the function of cilia in astrocytes and ependymal cells. Our central hypothesis is that the sphingolipid ceramide regulates cilium length and IFT, which is critical for the function of cilia in astrocytes and ependymal cells. Our objectives are to 1) test that cilia are regulated by ceramide-associated protein complexes; 2) define these complexes by using a novel technique to pull down ceramide enriched- and cilium-derived membrane vesicles and covalently crosslink a bifunctional ceramide analog to its interacting proteins to identify ceramide binding domains; 3) test that induction of receptors in cilia is regulated by ceramide; and 4) test that astroglial activation and ependymal cell function is regulated by ceramide in vitro and in vivo. Our expected outcomes include 1) determining ceramide species that promote ciliogenesis and support cilium function, and how the generation of ciliogenic ceramide is regulated; 2) defining a mechanism of cilium extension and IFT regulation by interaction of ceramide with atypical PKC, GSK-3β, and HDAC6; 3) defining SMase activation in vesicle transport pathways and their function for ceramide flux to the cilium; 4) identifying proteins and protein domains that associate with ceramide; 5) determining that transport and activation of signaling proteins in cilia, in particular of the sonic hedgehog pathway, are regulated by ceramide; and 6) defining a mechanism by which ceramide regulates astrocyte activation and ependymal cell- driven CSF flow. The impact of this project is on defining a fundamental and novel mechanism in basic neuroscience and membrane biology, which has broad implications for our understanding of the regulation of cilia by lipid-protein interaction and the importance of this regulation for the function of astrocytes and ependymal cells during brain development and aging. Aim 1 will test the hypothesis that ceramide stabilizes cilia in astrocytes and ependymal cells. Aim 2 will test the hypothesis that ceramide regulates IFT and receptor activation in cilia. Aim 3 will test the hypothesis that ciliogenic ceramide regulates astrocyte and ependymal cell function.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erhard Bieberich其他文献

Erhard Bieberich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erhard Bieberich', 18)}}的其他基金

Novel experimental models to study the effect of extracellular vesicles on neurons
研究细胞外囊泡对神经元影响的新实验模型
  • 批准号:
    10508346
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
Regulation of Microglial Activation State by a Lipid Transporter
脂质转运蛋白对小胶质细胞激活状态的调节
  • 批准号:
    9887304
  • 财政年份:
    2020
  • 资助金额:
    $ 35.55万
  • 项目类别:
Regulation of Microglial Activation State by a Lipid Transporter
脂质转运蛋白对小胶质细胞激活状态的调节
  • 批准号:
    10112795
  • 财政年份:
    2020
  • 资助金额:
    $ 35.55万
  • 项目类别:
Regulation of Microglial Activation State by a Lipid Transporter
脂质转运蛋白对小胶质细胞激活状态的调节
  • 批准号:
    10536663
  • 财政年份:
    2020
  • 资助金额:
    $ 35.55万
  • 项目类别:
TBI-induced exosome release accelerates Alzheimer's disease pathology
TBI诱导的外泌体释放加速阿尔茨海默病病理学
  • 批准号:
    10044406
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
TBI-induced exosome release accelerates Alzheimer's disease pathology
TBI诱导的外泌体释放加速阿尔茨海默病病理学
  • 批准号:
    10515674
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
TBI-induced exosome release accelerates Alzheimer's disease pathology
TBI诱导的外泌体释放加速阿尔茨海默病病理学
  • 批准号:
    9780683
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
TBI-induced exosome release accelerates Alzheimer's disease pathology
TBI诱导的外泌体释放加速阿尔茨海默病病理学
  • 批准号:
    10412902
  • 财政年份:
    2019
  • 资助金额:
    $ 35.55万
  • 项目类别:
Regulation of cilia by ceramide
神经酰胺对纤毛的调节
  • 批准号:
    9175692
  • 财政年份:
    2016
  • 资助金额:
    $ 35.55万
  • 项目类别:
Ceramide-induced cell death in neurodegeneration
神经退行性变中神经酰胺诱导的细胞死亡
  • 批准号:
    8531806
  • 财政年份:
    2010
  • 资助金额:
    $ 35.55万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
  • 批准号:
    498278
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
  • 批准号:
    24K04938
  • 财政年份:
    2024
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了