Tools for standardizing clinical research metadata using HL7 FHIR
使用 HL7 FHIR 标准化临床研究元数据的工具
基本信息
- 批准号:9353446
- 负责人:
- 金额:$ 47.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AreaBig DataBig Data to KnowledgeBiologyCellsClinicalClinical InformaticsClinical ResearchCollaborationsCommunitiesComplexComputer softwareDataData AnalyticsData DiscoveryData ElementData SetDatabasesDevelopmentDictionaryEcosystemFaceFailureFunding OpportunitiesGoalsHealthcareInformaticsInternationalMalignant NeoplasmsMetadataMethodsModelingOntologyPatientsPerformancePhenotypePilot ProjectsProcessRecordsResearch InfrastructureResearch PersonnelResourcesSemanticsServicesStandardizationSystemTechnologyTestingTheoretical modelTranslational ResearchUnited States National Institutes of Healthanticancer researchbasebig biomedical dataclinical data warehouseclinically relevantcomputer based Semantic Analysiscomputerized data processingdata exchangedata integrationdata modelingdata resourcedesigngenomic profileshealth dataindexinginteroperabilitymethod developmentnext generationopen sourceoutreachrepositoryresearch studyresponsesoftware developmenttooltool developmentusabilityweb portal
项目摘要
Project Summary
The proposed project is in response to the U01 Funding Opportunity Announcement (FOA) for the Big Data to
Knowledge (BD2K) Development of Software Tools and Methods for Biomedical Big Data in the topic area of
applying metadata. The overall goal here is to design, develop and evaluate an integrated platform for
clinical research metadata standardization leveraging both standards-based representation and scalable
Semantic Web technologies. The ultimate goal is to advance clinical research data discovery and analytic
capabilities for clinical and translational centers and investigators. Clinical and translational research studies
increasingly involve the manipulation of large datasets (e.g., patient records and genomic profiles) and the
application of complex methods. To derive clinically relevant conclusions from such large datasets, the clinical
and translational research community faces significant data integration challenges related to scalability,
interactivity, representation standards, sustainability, and robustness. Failure to deal with these challenges will
have a significant negative impact on downstream data reuse, sharing and analysis in the broader scientific
communities. Detailed Clinical Models (DCMs) have been regarded as the basis for retaining computable
meaning when data are exchanged between heterogeneous clinical systems. Amongst the emerging national
and international initiatives on the standardization of DCM modeling are the Clinical Informatics Modeling
Initiative (CIMI) and the HL7 Fast Healthcare Interoperability Resources (FHIR). FHIR is an emerging HL7
standard; it leverages existing logical and theoretical models to provide a consistent, easy to implement, and
rigorous mechanism for exchanging data between healthcare applications. However, currently the toolbox that
enables HL7 FHIR as a global data model to standardize clinical research metadata is very limited. Such
metadata include data dictionaries associated with clinical research datasets and a variety of underlying data
models in the existing integrated data repositories (IDRs) such as the Informatics for Integrating Biology and
the Bedside (i2b2). The proposed project leverages emerging Semantic Web technologies to provide a
scalable standards-based framework that enables effective and efficient big data integration and semantic
sharing. The proposed project builds on semantic metadata software and infrastructure developed in our
previous projects, including an NIH U24 bioCADDIE (biomedical and healthCAre Data Discovery Index
Ecosystem) pilot project (PI: Jiang) that investigates the feasibility of indexing clinical research datasets using
HL7 FHIR, and an NCI U01 supplement (PI: Jiang) that creates an open-source IDR (e.g., i2b2) with FHIR-
based cancer data services for cancer research. The objective of the proposed project is to consolidate,
develop, and evaluate methods and tools for standardizing clinical research metadata and data models using
HL7 FHIR. Our specific aims are: 1) Consolidate our bioCADDIE tools for indexing clinical research metadata
using HL7 FHIR; 2) Create methods and tools for integrating i2b2 clinical data repository with HL7 FHIR; 3)
Deploy an integrated web-portal for community-based metadata harmonization and tool dissemination. The
proposed project will produce a suite of methods and tools for clinical research metadata standardization using
HL7 FHIR and effectively facilitate secondary use of clinical research data and applications, ultimately
advancing clinical and translational data discovery and analytics.
项目摘要
拟议的项目是为了响应U 01大数据资助机会公告(FOA),
知识(BD 2K)开发生物医学大数据的软件工具和方法,主题领域为
应用元数据。总体目标是设计、开发和评估一个综合平台,
临床研究元数据标准化利用基于标准的表示和可扩展
语义网技术。最终目标是推进临床研究数据发现和分析
为临床和翻译中心及研究者提供的能力。临床和转化研究
越来越多地涉及对大数据集的操作(例如,患者记录和基因组图谱),
复杂方法的应用。为了从如此大的数据集中得出临床相关的结论,
和转化研究社区面临着与可扩展性相关的重大数据集成挑战,
交互性、表示标准、可持续性和鲁棒性。如果不能应对这些挑战,
对下游数据的再利用、共享和更广泛的科学分析产生重大的负面影响。
社区.详细的临床模型(DCM)被认为是保留可计算的基础。
这意味着当数据在异构临床系统之间交换时。在新兴国家中,
临床信息学建模(Clinical Informatics Modeling)
倡议(CIMI)和HL 7快速医疗保健互操作性资源(FHIR)。FHIR是一种新兴的HL 7
标准;它利用现有的逻辑和理论模型提供一致的、易于实现的
在医疗保健应用程序之间交换数据的严格机制。然而,目前,
使HL 7 FHIR作为全球数据模型标准化临床研究元数据的能力非常有限。等
元数据包括与临床研究数据集和各种基础数据相关的数据字典
现有的综合数据库(IDR)中的模型,如整合生物学的信息学,
床边(i2 b2)。拟议的项目利用新兴的语义网技术,
可扩展的基于标准的框架,可实现有效和高效的大数据集成和语义
共享拟议的项目建立在语义元数据软件和基础设施上,
以前的项目,包括NIH U24 bioCADDIE(生物医学和健康CAre数据发现索引
生态系统)试点项目(PI:Jiang),该项目研究使用
HL 7 FHIR,以及创建开源IDR的NCI U 01补充(PI:Jiang)(例如,i2 b2)与FHIR-
基于癌症研究的癌症数据服务。拟议项目的目标是巩固,
开发和评估标准化临床研究元数据和数据模型的方法和工具,
HL7 FHIR。我们的具体目标是:1)整合我们的bioCADDIE工具,用于索引临床研究元数据
使用HL 7 FHIR; 2)创建用于将i2 b2临床数据存储库与HL 7 FHIR集成的方法和工具; 3)
部署一个综合门户网站,用于基于社区的元数据统一和工具传播。的
拟议的项目将使用
HL 7 FHIR并有效促进临床研究数据和应用程序的二次使用,最终
推进临床和转化数据发现和分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoqian Jiang其他文献
Guoqian Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoqian Jiang', 18)}}的其他基金
FHIRCat: Enabling the Semantics of FHIR and Terminologies for Clinical and Translational Research
FHIRCat:为临床和转化研究提供 FHIR 语义和术语
- 批准号:
10401244 - 财政年份:2021
- 资助金额:
$ 47.7万 - 项目类别:
FHIRCat: Enabling the Semantics of FHIR and Terminologies for Clinical and Translational Research
FHIRCat:为临床和转化研究提供 FHIR 语义和术语
- 批准号:
10091916 - 财政年份:2021
- 资助金额:
$ 47.7万 - 项目类别:
FHIRCat: Enabling the Semantics of FHIR and Terminologies for Clinical and Translational Research
FHIRCat:为临床和转化研究提供 FHIR 语义和术语
- 批准号:
10005525 - 财政年份:2019
- 资助金额:
$ 47.7万 - 项目类别:
caCDE-QA: A Quality Assurance Platform for Cancer Study Common Data Elements
caCDE-QA:癌症研究通用数据元素的质量保证平台
- 批准号:
8765818 - 财政年份:2014
- 资助金额:
$ 47.7万 - 项目类别:
caCDE-QA: A Quality Assurance Platform for Cancer Study Common Data Elements
caCDE-QA:癌症研究通用数据元素的质量保证平台
- 批准号:
9110905 - 财政年份:2014
- 资助金额:
$ 47.7万 - 项目类别:
caCDE-QA: A Quality Assurance Platform for Cancer Study Common Data Elements
caCDE-QA:癌症研究通用数据元素的质量保证平台
- 批准号:
8913908 - 财政年份:2014
- 资助金额:
$ 47.7万 - 项目类别:
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
- 批准号:
MR/Y034422/1 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
- 批准号:
24K21025 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
- 批准号:
2346286 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Standard Grant
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
- 批准号:
DP240100300 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Discovery Projects
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2348755 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
- 批准号:
24K05127 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
- 批准号:
DP240101848 - 财政年份:2024
- 资助金额:
$ 47.7万 - 项目类别:
Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
- 批准号:
10069843 - 财政年份:2023
- 资助金额:
$ 47.7万 - 项目类别:
EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
- 批准号:
10053966 - 财政年份:2023
- 资助金额:
$ 47.7万 - 项目类别:
Collaborative R&D