Power calculation and design issues in next-generation sequencing

下一代测序中的功率计算和设计问题

基本信息

  • 批准号:
    9278965
  • 负责人:
  • 金额:
    $ 21.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-07 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Next-generation sequencing has brought revolutionary genome-wide, dense resolution and high-throughput capability to perform various types of omics analyses, including gene expression, methylation, fusion gene, somatic mutation and many others. With the dropping costs, the technology is gaining popularity. The experimental expenses, however, remain significant and power calculation tools are essential to adequately design and guide an NGS analysis. Unlike power calculation in traditional experiments or microarrays, power calculation in NGS require simultaneous consideration of sample size and sequencing depth and count-data also bring statistical challenges. We propose the following aims in this proposal: (1a) Develop power calculation tools for differential expression analysis from RNA-seq experiments. Optimal sample size and sequencing depth are jointly determined by power function and budget constraints. (1b) Develop power calculation tools for differential methylation in methyl-seq experiments. (2a) Develop power calculation tools for fusion gene detection in cancer using RNA-seq. Identify sample size and sequencing depth needed for fusion genes with low prevalence and low allelic-fraction. (2b) Perform additional ultra-deep sequencing in the preliminary prostate study to identify additional low-allelic-fraction and prognosis predictive fusion genes. Successful completion of these aims will provide state-of-the-art power calculation tools for the fast growing projects using NGS technology for candidate marker and fusion gene detection.
 描述(由申请人提供):下一代测序带来了革命性的全基因组、高分辨率和高通量能力,可进行各种类型的组学分析,包括基因表达、甲基化、融合基因、体细胞突变等。随着成本的下降,这项技术越来越受欢迎。然而,实验费用仍然很高,功率计算工具对于充分设计和指导NGS分析至关重要。与传统实验或微阵列中的功效计算不同,NGS中的功效计算需要同时考虑样本量和测序深度,并且计数数据也带来了统计挑战。我们提出以下目标:(1a)开发用于RNA-seq实验差异表达分析的功效计算工具。最佳样本量和测序深度由幂函数和预算约束共同决定。(1b)开发甲基测序实验中差异甲基化的功效计算工具。(2a)使用RNA-seq开发癌症融合基因检测的功效计算工具。确定低流行率和低等位基因比例的融合基因所需的样本量和测序深度。(2b)在初步前列腺研究中进行额外的超深度测序,以确定额外的低等位基因分数 和预后预测融合基因。这些目标的成功完成将为快速发展的利用NGS技术进行候选标记和融合基因检测的项目提供最先进的功效计算工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George C. Tseng其他文献

Mutual information for detecting multi-class biomarkers when integrating multiple bulk or single-cell transcriptomic studies
整合多个批量或单细胞转录组研究时用于检测多类生物标志物的相互信息
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian Zou;Zheqi Li;N. Carleton;S. Oesterreich;Adrian V. Lee;George C. Tseng
  • 通讯作者:
    George C. Tseng
Sex-Specific Concordance of Striatal Transcriptional Signatures of Opioid Addiction in Human and Rodent Brains
人类和啮齿动物大脑中阿片类药物成瘾的纹状体转录特征的性别特异性一致性
  • DOI:
    10.1016/j.bpsgos.2025.100476
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    3.700
  • 作者:
    Micah A. Shelton;Nicole Horan;Xiangning Xue;Lisa Maturin;Darrell Eacret;Julie Michaud;Navsharan Singh;Benjamin R. Williams;Mackenzie C. Gamble;Joseph A. Seggio;Madeline K. Fish;BaDoi N. Phan;George C. Tseng;Julie A. Blendy;Leah C. Solberg Woods;Abraham A. Palmer;Olivier George;Ryan W. Logan;Marianne L. Seney
  • 通讯作者:
    Marianne L. Seney
MetaOmics: Comprehensive Analysis Pipeline and Browser-based Software Suite for Transcriptomic Meta-Analysis
MetaOmics:用于转录组荟萃分析的综合分析管道和基于浏览器的软件套件
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Tianzhou Ma;Zhiguang Huo;Anche Kuo;Li Zhu;Zhou Fang;Xiangrui Zeng;Chien-Wei Lin;Silvia Liu;Lin Wang;Tanbin Rahman;Lun-Ching Chang;Sunghwan Kim;Jia Li;Yongseok Park;Chi Song;Steffi Oesterreich;Etienne Sibille;George C. Tseng
  • 通讯作者:
    George C. Tseng
Sex and regional differences in gene expression across the striatum in psychosis
精神病患者纹状体中基因表达的性别和区域差异
  • DOI:
    10.1038/s41398-025-03395-3
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Megan S. Perez;RuoFei Yin;Madeline R. Scott;Wei Zong;Marianne L. Seney;Xiangning Xue;Mariah A. Hildebrand;Vaishnavi G. Shankar;Jill R. Glausier;David A. Lewis;George C. Tseng;Kyle D. Ketchesin;Colleen A. McClung
  • 通讯作者:
    Colleen A. McClung
Accurate and Ultra-Efficient p-Value Calculation for Higher Criticism Tests
准确且超高效的 p​​ 值计算,适用于更高的批评测试

George C. Tseng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George C. Tseng', 18)}}的其他基金

Disease subtyping guided by clinical phenotype for precision medicine
以临床表型为指导的疾病亚型精准医学
  • 批准号:
    10558889
  • 财政年份:
    2023
  • 资助金额:
    $ 21.57万
  • 项目类别:
Congruence of mouse model to human in transcriptomic response
小鼠模型与人类转录组反应的一致性
  • 批准号:
    9768543
  • 财政年份:
    2018
  • 资助金额:
    $ 21.57万
  • 项目类别:
Power calculation and design issues in next-generation sequencing
下一代测序中的功率计算和设计问题
  • 批准号:
    8963892
  • 财政年份:
    2015
  • 资助金额:
    $ 21.57万
  • 项目类别:
Power calculation and design issues in next-generation sequencing
下一代测序中的功率计算和设计问题
  • 批准号:
    9107428
  • 财政年份:
    2015
  • 资助金额:
    $ 21.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了