Multimodal Imaging Biomarkers of Parkinson’s Disease
帕金森病的多模态成像生物标志物
基本信息
- 批准号:9552310
- 负责人:
- 金额:$ 40.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:Amygdaloid structureAnatomyAtlasesBasal GangliaBayesian ModelingBiological MarkersBrainCharacteristicsClinicalClinical ManagementConduct Clinical TrialsCorpus striatum structureDataData SetDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingDisease MarkerDisease ProgressionDopamineDorsalEarly DiagnosisEvaluationForms ControlsFunctional Magnetic Resonance ImagingFunctional disorderFutureGlobus PallidusHippocampus (Brain)ImageInvestigationLabelLeadLimbic SystemLinkMagnetic Resonance ImagingMeasuresMediatingMediationMediator of activation proteinMethodsModelingMotorMultimodal ImagingNational Institute of Neurological Disorders and StrokeNeuronsParkinson DiseasePathway interactionsPatientsPharmaceutical PreparationsPhaseProcessPropertyRed nucleus structureReproducibilityResearchResearch DesignRestRoleScanningSecondary Parkinson DiseaseStructureSubgroupSubstantia nigra structureSymptomsTechniquesThalamic structureValidationWorkanalytical toolbasebiomarker discoverybiomarker panelcandidate markercingulate gyrusdisorder controldopaminergic neuronhigh dimensionalityimaging biomarkerimprovedin vivomultimodalityneuroimagingneuroimaging markernon-motor symptomnovelpars compactaprogramsprogression markerrelating to nervous systemvalidation studies
项目摘要
Project Summary/Abstract: There is a clear need for well-validated biomarkers for Parkinson's disease (PD)
to aid early detection, more precise diagnosis, and clinical management. Numerous candidate markers are
emerging, for example, spurred by initiatives such as the Parkinson's Disease Biomarker Program (PDBP)
launched by the National Institute of Neurological Disorders and Stroke. One promising path to biomarker
discovery involves the use of multimodal neuroimaging to reveal neuropathophysiologic characteristics of PD.
PD involves a severe loss of dopamine producing neurons, which is expected to lead to downstream changes
in brain function and structure, some of which manifest through in vivo neuroimaging (Politis, 2014). Identifying
robust neuroimaging alterations in symptomatic PD patients creates an opportunity to assess the role of such
changes for tracking disease progression and eventually to investigate whether similar changes emerge during
the prodromal period. Biomarker discovery from a massive set of multimodal neuroimaging features depends
critically on the development and application of advanced analytic techniques.
In previous research (U18 NS082143), we developed a suite of analytic tools for cross-sectional
multimodal neuroimaging data to accurately dissociate patients with mild to moderate PD from healthy control
subjects. In this highly successful discovery phase, we used large-scale magnetic resonance imaging (MRI),
resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI), and we identified three parsimonious
panels of strongly predictive multimodal imaging markers. The first panel consists of 24 functional and
structural markers (MRI, DTI, and rs-fMRI), which collectively reflect thalamic and limbic system alterations
(e.g. hippocampus, amygdala, orbitofrontal cortex, and cingulate gyrus). The second identifies 23 markers,
resulting from an analysis that includes more detailed coverage of the basal ganglia. Lastly, we identified a 15-
feature structural panel (MRI and DTI), which we expect to be less susceptible to effects from PD medications.
Long-term, each panel may offer advantages in practice. We embedded in our selection processes methods
to promote reproducibility and model parsimony, while targeting high accuracy.
In this new project, we will further evaluate the markers discovered in our previous research for
validation and possibly refinement. We also seek to understand changes in these markers in distinct sets of
patients who are on and off of their usual PD medications, to investigate the ability of these cross-sectional and
new longitudinal markers to forecast progression, and to determine associations between clinical symptoms
and the emergent imaging markers. A major advantage of this project is that we have three independent data
sets, two of which have longitudinal scans, enabling further discovery and validation. The data come from the
Parkinson's Progression Markers Intiative (PPMI) and from two studies conducted under the PDBP.
项目摘要/摘要:显然需要经过充分验证的帕金森病(PD)生物标志物
以帮助早期发现、更精确的诊断和临床管理。许多候选标记物是
例如,在帕金森病生物标志物项目(PDBP)等倡议的推动下,
由国家神经疾病和中风研究所发起。生物标志物的一个有前途的途径
这一发现涉及使用多模态神经成像来揭示PD的神经病理生理学特征。
PD涉及多巴胺产生神经元的严重损失,这预计将导致下游变化
在大脑功能和结构中,其中一些通过体内神经成像表现出来(Politis,2014)。识别
有症状的PD患者的神经影像学改变创造了一个机会,以评估这种变化的作用。
跟踪疾病进展的变化,并最终调查在治疗过程中是否出现类似的变化。
前驱期从大量多模态神经成像特征中发现生物标志物取决于
对先进分析技术的发展和应用持批判态度。
在以前的研究(U18 NS 082143)中,我们开发了一套分析工具,用于横截面
多模式神经影像学数据,以准确区分轻度至中度PD患者与健康对照
科目在这个非常成功的发现阶段,我们使用了大规模磁共振成像(MRI),
静息态功能磁共振成像(rs-fMRI)和扩散张量成像(DTI),我们确定了三个吝啬
强预测性多模态成像标记物组。第一个小组由24个功能和
结构标记物(MRI、DTI和rs-fMRI),共同反映丘脑和边缘系统的改变
(e.g.海马、杏仁核、眶额皮质和扣带回)。第二个识别23个标记,
这是由包括基底神经节的更详细覆盖的分析产生的。最后,我们发现了一个15-
功能结构面板(MRI和DTI),我们预计不太容易受到PD药物的影响。
从长远来看,每个小组都可能在实践中提供优势。我们在选拔过程中
以提高可重复性和模型简约性,同时实现高精度。
在这个新项目中,我们将进一步评估我们以前研究中发现的标记,
验证和可能的改进。我们还试图了解这些标志物在不同的组中的变化,
正在接受和停止常规PD药物治疗的患者,以调查这些横断面和
新的纵向标志物,以预测进展,并确定临床症状之间的关联
和紧急成像标记。这个项目的一个主要优势是我们有三个独立的数据
其中两个具有纵向扫描,能够进一步发现和验证。这些数据来自
帕金森病进展标志物启动(PPMI)和PDBP下进行的两项研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
F. DuBois Bowman其他文献
A joint model for longitudinal data profiles and associated event risks with application to a depression study
纵向数据概况和相关事件风险的联合模型及其应用于抑郁症研究
- DOI:
10.1111/j.1467-9876.2005.00485.x - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman;A. Manatunga - 通讯作者:
A. Manatunga
Predicting Power for Longitudinal Studies with Attrition
纵向磨损研究的预测能力
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman - 通讯作者:
F. DuBois Bowman
F. DuBois Bowman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('F. DuBois Bowman', 18)}}的其他基金
Brain and Behavioral Indicators of Risk for Parkinsonism among Adolescents with Early Pesticide Exposure
早期接触农药的青少年帕金森病风险的大脑和行为指标
- 批准号:
10321251 - 财政年份:2019
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8722053 - 财政年份:2014
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8889317 - 财政年份:2014
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8473443 - 财政年份:2012
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8554396 - 财政年份:2012
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7318269 - 财政年份:2007
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7862581 - 财政年份:2007
- 资助金额:
$ 40.01万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7648077 - 财政年份:2007
- 资助金额:
$ 40.01万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 40.01万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 40.01万 - 项目类别:
Studentship