Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
基本信息
- 批准号:7318269
- 负责人:
- 金额:$ 26.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-15 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsArtsBrainBrain regionBrain scanCharacteristicsClassificationClinicalCocaine DependenceComplexComputer softwareComputersDataDepressed moodDevelopmentDevelopment PlansDocumentationEnsureFunctional Magnetic Resonance ImagingGeneticGoalsHamilton Rating Scale for DepressionIndividualLinkLocalizedLocationLogisticsMajor Depressive DisorderMapsMeasuresMental DepressionMental HealthMental disordersMethodologyMethodsModelingPatientsPatternPerformancePharmacotherapyPhysiciansPositron-Emission TomographyProceduresProcessPsychiatric therapeutic procedurePsychotherapyRangeRateRecording of previous eventsRelative (related person)ResearchResearch PersonnelRestScanningSchizophreniaSelection for TreatmentsShort-Term MemorySpecific qualifier valueStatistical MethodsSymptomsSyndromeTechniquesTechnologyTestingTranslatinganalytical toolbaseexperiencegraphical user interfaceimprovedinstrumentinterestmodel developmentneuroimagingneurophysiologynovelnovel strategiespredictive modelingprogramsrelating to nervous systemresponsesoftware developmentstatisticssuccesstool
项目摘要
DESCRIPTION (provided by applicant): Functional neuroimaging technologies, including functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), are powerful noninvasive tools for mental health research. Analytic methods for fMR! and PET data are critical both for determining substantive research questions that can be addressed and for ensuring the validity of inferences. This project seeks to develop state-of-the-art statistical methodology for fMRI and PET data that will have important mental health implications for clinical practice and research. The long-term goals are 1) to assist physicians in making treatment decisions for patients with psychiatric disorders, focusing here on schizophrenia and major depression and 2) to establish a modeling framework for characterizing task-related brain activity that accounts for spatial associations arising, for example, from complex neurophysiological links between brain regions. In an effort to make an impact on clinical mental health practices, one aim is to develop a novel approach to predict individual-specific responses to treatment. Specifically, the goal is to predict post- treatment patterns of task-related brain activity for a particular patient based on pre-treatment scans and other patient characteristics and to predict eventual symptom response to treatment. The planned developments entail constructing and validating a Bayesian hierarchical model and an accurate classification algorithm for schizophrenia patients and for never-treated depressed subjects. A second aim is to construct a Bayesian hierarchical model for making inferences regarding task-related changes in brain activity, accounting for functional associations between different spatial locations (voxels). This approach would yield localized estimates, similar to commonly applied methods, but would estimate and adjust for key functional linkages. By building a model based on assumptions that are well-suited to the data, a major advantage of the proposed procedure is the ability to draw localized inferences that borrow strength from related voxels, often yielding more accurate results. A second advantage is that tests about extended anatomical regions can incorporate estimates of between-voxel correlations. Spatial modeling developments from Aim 2 may give rise to extensions to the proposed prediction framework (Aim 1). Successful development of the predictive algorithms would provide results that translate naturally to a clinical setting to help inform physicians' decisions regarding psychiatric treatments. Furthermore, the proposed spatial modeling framework would be a novel contribution to existing analytic methods for functional neuroimaging data. The focus here on fMRI and PET data related to schizophrenia, depression, and cocaine-dependence illustrates the potential applicability and relevance of the proposed methods across a range of mental health disorders.
描述(由申请人提供):功能性神经成像技术,包括功能性磁共振成像(fMRI)和正电子发射断层扫描(PET),是精神健康研究的强大非侵入性工具。fMR的分析方法! PET数据对于确定可以解决的实质性研究问题和确保推断的有效性都是至关重要的。该项目旨在为fMRI和PET数据开发最先进的统计方法,这些数据将对临床实践和研究产生重要的心理健康影响。长期目标是:1)帮助医生为精神疾病患者做出治疗决策,重点是精神分裂症和重度抑郁症; 2)建立一个建模框架,用于表征任务相关的大脑活动,该框架解释了由大脑区域之间复杂的神经生理学联系引起的空间关联。为了对临床心理健康实践产生影响,一个目标是开发一种新的方法来预测个体对治疗的反应。具体而言,目标是基于治疗前扫描和其他患者特征来预测特定患者的任务相关脑活动的治疗后模式,并预测对治疗的最终症状反应。计划的发展需要构建和验证贝叶斯分层模型和准确的分类算法,精神分裂症患者和从未治疗过的抑郁症患者。第二个目标是构建贝叶斯分层模型,用于推断与任务相关的大脑活动变化,考虑不同空间位置(体素)之间的功能关联。这一方法将产生与常用方法类似的本地化估计数,但将根据关键的职能联系进行估计和调整。通过基于非常适合数据的假设构建模型,所提出的过程的主要优点是能够从相关体素中借用强度进行局部推断,通常会产生更准确的结果。第二个优点是关于扩展解剖区域的测试可以合并体素之间相关性的估计。从目标2的空间建模的发展可能会引起扩展所提出的预测框架(目标1)。预测算法的成功开发将提供自然转化为临床环境的结果,以帮助医生做出关于精神病治疗的决定。此外,建议的空间建模框架将是一个新的贡献,现有的功能神经影像数据的分析方法。这里的重点是与精神分裂症,抑郁症和可卡因依赖相关的fMRI和PET数据,说明了所提出的方法在一系列精神健康疾病中的潜在适用性和相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
F. DuBois Bowman其他文献
A joint model for longitudinal data profiles and associated event risks with application to a depression study
纵向数据概况和相关事件风险的联合模型及其应用于抑郁症研究
- DOI:
10.1111/j.1467-9876.2005.00485.x - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman;A. Manatunga - 通讯作者:
A. Manatunga
Predicting Power for Longitudinal Studies with Attrition
纵向磨损研究的预测能力
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
F. DuBois Bowman - 通讯作者:
F. DuBois Bowman
F. DuBois Bowman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('F. DuBois Bowman', 18)}}的其他基金
Brain and Behavioral Indicators of Risk for Parkinsonism among Adolescents with Early Pesticide Exposure
早期接触农药的青少年帕金森病风险的大脑和行为指标
- 批准号:
10321251 - 财政年份:2019
- 资助金额:
$ 26.03万 - 项目类别:
Multimodal Imaging Biomarkers of Parkinson’s Disease
帕金森病的多模态成像生物标志物
- 批准号:
9552310 - 财政年份:2017
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8722053 - 财政年份:2014
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8889317 - 财政年份:2014
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8473443 - 财政年份:2012
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Determining Multimodal Biomarkers for Parkinson's Disease
确定帕金森病多模式生物标志物的分析方法
- 批准号:
8554396 - 财政年份:2012
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7862581 - 财政年份:2007
- 资助金额:
$ 26.03万 - 项目类别:
Analytic Methods for Functional Neuroimaging Data
功能神经影像数据的分析方法
- 批准号:
7648077 - 财政年份:2007
- 资助金额:
$ 26.03万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 26.03万 - 项目类别:
Research Grant