Statistical Methods for Multivariate Failure Time Data

多变量故障时间数据的统计方法

基本信息

  • 批准号:
    9206644
  • 负责人:
  • 金额:
    $ 16.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-12-16 至 2018-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY This research project will develop statistical methods for the analysis of time-to-event, or failure time, data. Major areas of application include randomized controlled trials and epidemiologic cohort studies for the prevention or treatment of cancer or other diseases. The project aims to develop regression methods for the simultaneous analysis of multiple outcome variables in relation to treatments or exposures that may be evolving over the study follow-up period. The methods to be developed will be based on semiparametric regression models that include Cox models for marginal hazard functions and additive semiparametric regression models for pairwise and higher dimensional dependency functions. Using these models the failure time data will be characterized using a multivariate version of Dabrowska’s survivor function representation. A maximum likelihood approach, based on the probability distribution of the evolving failure time histories, will be used for parameter estimation. The work has potential to strengthen analyses of treatment effects, or regression effects more generally, for specific clinical outcomes by using data on other failure time outcomes to provide information censoring information. For example in a clinical trial with death as primary outcome, these methods will allow the occurrence of serious, but non-fatal, events during the study subject follow-up period to strengthen primary outcome treatment evaluations. The novel methods also will provide an efficient means of assessing the magnitude of dependencies among the risks for various outcome types, and their relationship to treatments or covariates. Many clinical trials or cohort study applications involve some form of cohort subsampling, with expensive biomarker values determined from raw materials (e.g., genomic measures from blood specimens) only for ‘cases’ that develop study diseases during cohort follow-up and corresponding ‘controls’ that do not. A second aim of this research project is to develop efficient analyses of treatment or covariate effects in the presence of cohort subsampling, for both univariate and multivariate failure time data. The methods development here will also rely on semiparametric maximum likelihood methods, with the novel aspect of including a nonparametric likelihood component for covariate history increments as they evolve over cohort follow-up. With univariate failure time data this work will lead to estimating functions for Cox model regression parameters and for observed covariate history parameters for iterative maximization, under nested case-control, case-cohort, or more general sampling schemes. Multivariate failure time extensions will combine semiparametric models for marginal hazard functions and for pairwise and higher dimensional dependency functions with completely nonparametric models for observed covariate histories. Asymptotic distributions for the novel estimation procedures will be developed using empirical process theory, and moderate sample properties will be evaluated using computer simulations, and using applications to Women’s Health Initiative and other datasets.
项目总结 这项研究项目将开发统计方法来分析事件发生时间或故障时间数据。 主要应用领域包括随机对照试验和流行病学队列研究 癌症或其他疾病的预防或治疗。该项目的目的是开发回归方法,用于 同时分析与治疗或暴露有关的多个结果变量 在研究随访期内不断演变。要开发的方法将基于半参数 包含边际风险函数和加性半参数的COX模型的回归模型 两两相关函数和高维相关函数的回归模型。使用这些模型会导致失败 时间数据将使用Dabrowska的幸存者函数表示的多变量版本来表征。一个 基于演化故障时间历史的概率分布的最大似然方法将是 用于参数估计。这项工作有可能加强对治疗效果的分析,或 更一般地,通过使用关于其他失败时间结果的数据来对特定的临床结果进行回归效果 提供信息审查信息。例如,在以死亡为主要结果的临床试验中,这些 方法将允许在研究对象随访期内发生严重但非致命的事件 加强初步疗效评估。新的方法也将提供一种有效的手段 评估各种结果类型的风险之间的相关性大小,以及它们与 处理或协变量。许多临床试验或队列研究应用涉及某种形式的队列 二次抽样,昂贵的生物标记物价值由原材料确定(例如,来自 血液样本)仅适用于在队列随访期间发生研究疾病和相应 不需要的“控制”。这项研究项目的第二个目标是开发有效的治疗或 对于单变量和多变量失效时间数据,在存在队列次抽样的情况下的协变量效应。 这里的方法发展也将依赖于半参数最大似然方法,与新的 包括协变量历史增量的非参数似然分量的方面 队列随访。对于单变量失效时间数据,这项工作将导致估计COX模型的函数 回归参数和用于迭代最大化的观测协变量历史参数,在嵌套情况下 病例对照、病例队列或更一般的抽样方案。多变量故障时间延长将 边际风险函数、成对和高维的组合半参数模型 对观察到的协变量历史采用完全非参数模型的相关性函数。渐近的 将使用经验过程理论开发新的估计程序的分布,以及 适度的样本特性将使用计算机模拟和应用于女性的 健康倡议和其他数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ross L Prentice其他文献

Erratum To: Genetic variants in the MRPS30region and postmenopausal breast cancer risk
  • DOI:
    10.1186/gm318
  • 发表时间:
    2012-03-12
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Ying Huang;Dennis G Ballinger;James Y Dai;Ulrike Peters;David A Hinds;David R Cox;Erica Beilharz;Rowan T Chlebowski;Jacques E Rossouw;Anne McTiernan;Thomas Rohan;Ross L Prentice
  • 通讯作者:
    Ross L Prentice
Energy intake is associated with dietary macronutrient densities: inversely with protein and monounsaturated fat and positively with polyunsaturated fat and carbohydrate among postmenopausal females
在绝经后女性中,能量摄入与膳食常量营养素密度相关:与蛋白质和单不饱和脂肪呈负相关,与多不饱和脂肪和碳水化合物呈正相关
  • DOI:
    10.1016/j.ajcnut.2025.03.011
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Ross L Prentice;Aaron K Aragaki;Cheng Zheng;JoAnn E Manson;Lesley F Tinker;Dale A Schoeller;Michele N Ravelli;Daniel Raftery;GA Nagana Gowda;Sandi L Navarro;Ying Huang;Yasmin Mossavar-Rahmani;Robert B Wallace;Karen C Johnson;Johanna W Lampe;Marian L Neuhouser
  • 通讯作者:
    Marian L Neuhouser

Ross L Prentice的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ross L Prentice', 18)}}的其他基金

Statistical Methods for Multivariate Failure Time Data
多变量故障时间数据的统计方法
  • 批准号:
    9403190
  • 财政年份:
    2016
  • 资助金额:
    $ 16.46万
  • 项目类别:
Cardiovascular Disease Biomarkers and Mediation of Hormone Therapy Effects
心血管疾病生物标志物和激素治疗效果的调节
  • 批准号:
    8309334
  • 财政年份:
    2011
  • 资助金额:
    $ 16.46万
  • 项目类别:
Cardiovascular Disease Biomarkers and Mediation of Hormone Therapy Effects
心血管疾病生物标志物和激素治疗效果的调节
  • 批准号:
    8166022
  • 财政年份:
    2011
  • 资助金额:
    $ 16.46万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    7152317
  • 财政年份:
    2006
  • 资助金额:
    $ 16.46万
  • 项目类别:
Nutrition and Physical Activity Assessment Study (NPAAS)
营养和身体活动评估研究(NPAAS)
  • 批准号:
    7259454
  • 财政年份:
    2006
  • 资助金额:
    $ 16.46万
  • 项目类别:
Nutrition and Physical Activity Assessment Study (NPAAS)
营养和身体活动评估研究(NPAAS)
  • 批准号:
    7455869
  • 财政年份:
    2006
  • 资助金额:
    $ 16.46万
  • 项目类别:
Nutrition and Physical Activity Assessment Study (NPAAS)
营养和身体活动评估研究(NPAAS)
  • 批准号:
    7149737
  • 财政年份:
    2006
  • 资助金额:
    $ 16.46万
  • 项目类别:
Chronic Disease Population Research Issues and Strategies
慢性病人群研究问题与策略
  • 批准号:
    7153262
  • 财政年份:
    2006
  • 资助金额:
    $ 16.46万
  • 项目类别:
STATISTICAL METHODS FOR DISEASE PREVENTION TRIALS
疾病预防试验的统计方法
  • 批准号:
    6300380
  • 财政年份:
    2000
  • 资助金额:
    $ 16.46万
  • 项目类别:
STATISTICAL METHODS FOR DISEASE PREVENTION TRIALS
疾病预防试验的统计方法
  • 批准号:
    6102661
  • 财政年份:
    1999
  • 资助金额:
    $ 16.46万
  • 项目类别:

相似海外基金

MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
  • 批准号:
    10490338
  • 财政年份:
    2021
  • 资助金额:
    $ 16.46万
  • 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
  • 批准号:
    10353104
  • 财政年份:
    2021
  • 资助金额:
    $ 16.46万
  • 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
  • 批准号:
    21K04320
  • 财政年份:
    2021
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
  • 批准号:
    10688286
  • 财政年份:
    2021
  • 资助金额:
    $ 16.46万
  • 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
  • 批准号:
    20K17755
  • 财政年份:
    2020
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    10578649
  • 财政年份:
    2019
  • 资助金额:
    $ 16.46万
  • 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    10295141
  • 财政年份:
    2019
  • 资助金额:
    $ 16.46万
  • 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    10041708
  • 财政年份:
    2019
  • 资助金额:
    $ 16.46万
  • 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
  • 批准号:
    9776149
  • 财政年份:
    2019
  • 资助金额:
    $ 16.46万
  • 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
  • 批准号:
    2063934
  • 财政年份:
    2018
  • 资助金额:
    $ 16.46万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了