MEMBRANE BASIS OF VISUAL EXCITATION
视觉兴奋的膜基础
基本信息
- 批准号:9225216
- 负责人:
- 金额:$ 36.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffinityAge-YearsAgonistApoproteinsBindingBinding ProteinsBiochemistryBiologicalBiological ProcessBiologyCatalysisCellular MembraneComputer SimulationCoupledCouplingDataDevelopmentDimensionsDiscriminationDiseaseElderlyEncapsulatedEnvironmentEquilibriumEventEye diseasesFaceFamilyFoundationsFourier TransformFunctional disorderFutureG-Protein-Coupled ReceptorsG-substrateGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGoalsGrantHumanHuman BiologyHydration statusHydrogen BondingIndividualInvestigationLearningLengthLigandsLightLipid BilayersLipidsMacular degenerationMagnetic ResonanceMechanicsMediatingMedicineMembraneMembrane LipidsMembrane ProteinsMethodologyMethodsModelingModernizationMolecularMolecular ConformationMotionMovementNMR SpectroscopyNational Institute on AgingNight BlindnessOdorsOpsinOrganismOsmotic PressurePatientsPeptidesPharmaceutical PreparationsPharmacologic SubstancePharmacologyPhasePhotochemistryPhotonsPhysiologicalPropertyProtein ConformationProtein DynamicsProteinsReceptor ActivationRelaxationResearchRetinalRetinitis PigmentosaRetinoidsRhodopsinRoentgen RaysRoleShapesSignal TransductionSignaling ProteinSiteSocietiesSpectrum AnalysisSpin LabelsStressStructureStudy modelsSurfaceTechnologyTemperatureTestingTextTimeTransducinVisionVisualVisual AcuityVisual Signal Transduction PathwayWaterWorkage relatedaging populationbasecofactorcognitive skilldark matterdrug discoveryexperimental studyflexibilityhereditary blindnessinnovationinsightinterestmembrane modelmolecular dynamicsmolecular sizemoviemutantnovelnovel strategiespeerpeptide analogpolyunsaturated fatprototypepublic health relevancereceptorreceptor functionrestraintretinal rodssimulationsolid statesolid state nuclear magnetic resonancetemporal measurementvisual excitationvisual process
项目摘要
DESCRIPTION (provided by applicant): Our investigation aims to establish how the atomic and membrane-level events operate to trigger visual signal transduction by rhodopsin in a unified multi-scale framework, with broad implications for biological signaling. The high impact of understanding G-protein-coupled receptor (GPCR) activation is well appreciated. Yet numerous gaps in our understanding remain, both with rhodopsin, as well as other Family A GPCRs for which rhodopsin is a highly significant prototype. Here we plan to resolve the long sought, critical mechanistic features by an innovative approach that combines magnetic resonance (solid-state 2H and 13C NMR), Fourier transform infrared (FTIR), and electronic (UV-visible) spectroscopy. Our novel hypothesis for rhodopsin activation is formulated in terms of factors that drive a progression of transient conformational substates through an active ensemble: release of retinal strain, retinal-specific protein dynamics, hydration changes, pH catalysis, dynamical G-protein coupling, and membrane stress due to the polyunsaturated lipid composition. (1) Application of our novel solid-state 2H and 13C NMR technology will reveal how the release of conformational strain through retinal isomerization and relaxation unlocks the active rhodopsin (Meta-II) state. The angular and distance restraints from 2H and 13C solid-state NMR will illuminate the dynamical structure of retinal through its progression of active sub-states toward the active Meta-II form. (2) Changes in local retinal dynamics as studied by 2H and 13C NMR relaxation studies will be correlated with rhodopsin's activating motions by combining the results of spectroscopy with molecular dynamics (MD) simulations. Local retinal mobility will be related to large-scale protein dynamics involving fluctuations of the transmembrane helices. Notably, this work will address ambiguous X-ray structural data with results obtained at more physiological temperatures. Our investigation will decide the question of why active Meta-II rhodopsin and the ligand-free Opsin* apoprotein have similar X-ray structures, yet completely different activities. (3) Next we plan to investigate the specific role f pH and hydration throughout the active ensemble in relation to rhodopsin's interaction with transducin. We plan to combine our spectroscopic methods (UV-visible, FTIR, site-directed spin-labeling) with osmotic pressure studies to investigate changes in water-mediated H-bonding networks, together with a dramatic water influx due to transmembrane helical movements in rhodopsin activation. (4) Additional research will uncover the influences of polyunsaturated lipids on rhodopsin through modulation of membrane curvature stress, and how lipid composition biases the distribution of states in the active ensemble mechanism. Our plan encapsulates a new multi-scale view of how rhodopsin initiates visual signal transduction, tying together mechanical, environmental, temporal, and structural factors. Understanding how these factors interoperate across various length and time scales is fundamental to understanding of how rhodopsin achieves the extreme high fidelity required for visual signaling. Our robust and novel approach will provide important insights that are transferable to the broader class of GPCRs in biology and pharmacology.
描述(由申请人提供):我们的研究旨在确定原子和膜水平的事件如何在统一的多尺度框架中触发视紫红质的视觉信号转导,这对生物信号传导具有广泛的影响。了解g蛋白偶联受体(GPCR)激活的高影响是值得赞赏的。然而,我们对视紫红质以及视紫红质是非常重要的原型的其他A家族gpcr的理解仍然存在许多差距。在这里,我们计划通过结合磁共振(固态2H和13C NMR),傅里叶变换红外(FTIR)和电子(uv -可见)光谱的创新方法来解决长期寻求的关键机制特征。我们关于视紫红质活化的新假设是根据驱动瞬态构象亚态进展的因素制定的,这些因素通过一个活跃的集合:视网膜应变的释放,视网膜特异性蛋白质动力学,水合作用的变化,pH催化,动态g蛋白偶联,以及由于多不饱和脂质组成的膜应力。(1)应用我们的新型固态2H和13C核磁共振技术将揭示通过视网膜异构化和松弛释放构象应变如何解锁活性视紫质(Meta-II)状态。2H和13C固体核磁共振的角度和距离约束将阐明视网膜活性亚态向活性Meta-II形式发展的动力学结构。(2)通过2H和13C核磁共振弛豫研究,将光谱学结果与分子动力学(MD)模拟相结合,研究视网膜局部动力学的变化与视紫红质激活运动的相关性。局部视网膜移动将与涉及跨膜螺旋波动的大规模蛋白质动力学有关。值得注意的是,这项工作将解决在生理温度下获得的模糊x射线结构数据。我们的研究将决定为什么活性的Meta-II视紫红质和无配体的视蛋白*载子蛋白具有相似的x射线结构,但活性完全不同。(3)接下来,我们计划研究pH和水合作用在紫红质与转导蛋白相互作用中的具体作用。我们计划将我们的光谱方法(uv -可见,FTIR,位点定向自旋标记)与渗透压研究结合起来,研究水介导的氢键网络的变化,以及由于紫红质激活的跨膜螺旋运动而引起的大量水流入。(4)进一步的研究将揭示多不饱和脂质通过调节膜曲率应力对视紫红质的影响,以及在主动系综机制中,脂质组成如何影响状态分布。我们的计划包含了一个新的多尺度视角,即视紫红质如何启动视觉信号转导,将机械、环境、时间和结构因素联系在一起。了解这些因素如何在不同长度和时间尺度上相互作用,是理解视紫红质如何实现视觉信号所需的极高保真度的基础。我们稳健而新颖的方法将提供重要的见解,可转移到生物学和药理学中更广泛的gpcr类别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael F Brown其他文献
Michael F Brown的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael F Brown', 18)}}的其他基金
LIPID MODULATION OF RHODOPSIN SIGNALING IN MEMBRANES
膜中视紫红质信号传导的脂质调节
- 批准号:
7585215 - 财政年份:2008
- 资助金额:
$ 36.51万 - 项目类别:
LIPID MODULATION OF RHODOPSIN SIGNALING IN MEMBRANES
膜中视紫红质信号传导的脂质调节
- 批准号:
7446920 - 财政年份:2008
- 资助金额:
$ 36.51万 - 项目类别:
LIPID MODULATION OF RHODOPSIN SIGNALING IN MEMBRANES
膜中视紫红质信号传导的脂质调节
- 批准号:
7802111 - 财政年份:2008
- 资助金额:
$ 36.51万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Studentship